期刊文献+

超低马赫数空腔流诱发自激振荡数值模拟 被引量:4

Numerical Simulation for Self-oscillation Evoked by Cavity Flow at Ultra Low Mach Numbers
原文传递
导出
摘要 为了揭示超低马赫数空腔流诱发自激振荡的机理,通过引入弱可压缩流体模型并采用大涡模拟对空腔内的瞬态流场和压力脉动进行了计算。将计算获得的腔内压力脉动与低噪声风洞测试结果进行了对比,以验证计算方法的可靠性。结果表明:弱可压缩流模型的大涡模拟能较为准确地预测超低马赫数空腔流自激振荡的频率与幅值;频率分布显示振荡具有准谐振的特点;空腔内的流场结构和开口处涡的运动表明自激振荡的产生机理为空腔前缘的涡旋脱落后击打在空腔的后缘,产生压力回弹,回弹的压力波传到上游进一步加剧了涡旋的脱落。 In order to reveal the mechanism of self-oscillation evoked by cavity flow at ultra low Mach number, the instantaneous flow field and pressure fluctuation inside the cavity were computed by large eddy simulation based on the weakly compressible fluid model. To validate the computational scheme, the pressure fluctuation inside the cavity obtained by numerical simulation was compared with that by low noise wind tunnel measurement. The results show that the large eddy simulation for weakly compressible fluid model can accurately predict the frequency and amplitude of the self-oscillation at ultra low Mach number. The frequency distribution reveals that the self-oscillation is quasi-harmonic. The flow field structure inside the cavity and the vortex motion along the opening reveal the mechanism of self-oscillation, that is, vortex shedding from the leading edge of cavity will hit the trailing edge of the cavity, then a pressure rebound will appear, finally, the rebound pressure wave will intensify the vortex shedding.
出处 《中国公路学报》 EI CAS CSCD 北大核心 2015年第7期121-126,共6页 China Journal of Highway and Transport
基金 国家自然科学基金项目(51305312) 中央高校基本科研业务费专项资金项目(WUT142207005 2012-IV-068) 现代汽车零部件技术湖北省重点实验室开放基金项目(2012-07) 汽车零部件先进制造技术教育部重点实验室开放基金项目(2013-04)
关键词 汽车工程 空腔流 弱可压缩流模型 大涡模拟 automotive engineering cavity flow weakly compressible fluid model large eddy simulation
  • 相关文献

参考文献15

  • 1MACMANUS D G, DORAN D S. Passive Control of Transonic Cavity Flow [J]. Journal of Fluids Engi- neering, 2008,130(6) : 142-150.
  • 2汪怡平,谷正气,杨雪,林肖辉,董光平.汽车天窗风振噪声数值模拟与控制[J].中国公路学报,2010,23(6):108-114. 被引量:20
  • 3ROSSITER J E. Wind Tunnel Experiments on the Flow over Rectangular Cavities at Subsonic and Tran- sonic Speeds[R]. Farnborough: Royal Aircraft Estab- lishment, 1964.
  • 4TAM C K W,BLOCK P J W. On the Tones and Pres- sure Oscillations Induced by Flow over Rectangular Cavities[J]. Journal of Fluids Mechanics, 1978, 89 (2) :373-399.
  • 5ROCKWELL D. Oscillations of Impinging Shear Lay- ers[J]. AIAA Journal,1983,21(5) :645-664.
  • 6YANG Z D,GU Z Q,TU J Y,et al. Numerical Analysis and Passive Control of a Car Side Window Buffeting Noise Based on Scale-adaptive Simulation[J]. Applied Acoustics,2014,79(5) :23-24.
  • 7HARDIN J C,POPE D S. Sound Generation by Flow over a Two-dimensional Cavity [J]. AIAA Journal, 1995,33(3) :407-412.
  • 8INAGAKI M, MURATA O, KONDOH T. Numerical Prediction of Fluid-resonant Oscillation at Low Mach Number[J]. AIAA Journal,2002,40(9) : 1823-1829.
  • 9欧阳绍修,刘学强,张宝兵.DES方法模拟空腔流动及噪声分析[J].南京航空航天大学学报,2012,44(6):792-796. 被引量:6
  • 10崔桂香,许春晓,张兆顺.湍流大涡数值模拟进展[J].空气动力学学报,2004,22(2):121-129. 被引量:53

二级参考文献54

共引文献81

同被引文献24

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部