期刊文献+

面向领域标签辅助的服务聚类方法 被引量:30

Domain-Oriented and Tag-Aided Web Service Clustering Method
下载PDF
导出
摘要 Web服务数量的激增对服务发现提出了更高的要求,服务聚类是促进服务发现的一种重要技术.但是,现有服务聚类方法只对单一类型的服务文档进行聚类,缺乏考虑服务的领域特性和服务标签的应用.针对这些问题,本文首先使用本体辅助的支持向量机和面向领域的服务特征降维技术建立服务的特征内容向量,然后使用一种标签辅助的主题服务聚类方法 T-LDA建立融合标签信息之后的隐含主题表示,并利用归一化方法消除通用主题的影响,综合上述方法建立一个面向领域标签辅助的Web服务聚类方法 DTWSC.实验结果表明,该框架能够提高针对不同类型的服务文档的聚类效果.与LDA、K-Means等方法相比,该方法在聚类纯度、熵和F-Measure指标上均具有更好的效果. The growing number of web services puts forward higher requirements for searching desired web services and clustering Web services can greatly enhance the discovery of Web service. However,the existing clustering approaches are only for a single type of service documents,and they are lacking of considering the domain characteristic and the tags information of services. To solve these problems,the proposed approach constructs the feature vectors of Web service contents by using ontology empowered SVMand domain oriented feature dimension reduction technology. Then a tag aided service clustering model called T-LDA is proposed to construct the hidden topic representations of Web service and general topical information which has less discriminative power is normalized. Finally all methods mentioned above are combined to form the domain oriented and tag aided Web service clustering( DTWSC). Experimental results showthat the proposed approach can improve the effect of clustering. Compared with the approaches of LDA and K-means,the proposed approach achieves better performance of the purity,entropy and F-measure.
出处 《电子学报》 EI CAS CSCD 北大核心 2015年第7期1266-1274,共9页 Acta Electronica Sinica
基金 国家973重点基础研究发展计划(No.2014CB340404) 国家自然科学基金(No.61373037,No.61202031) 重点实验室开放课题(No.SKLSE 2014-10-07)
关键词 Web服务聚类 面向领域 标签辅助 主题模型 Web service clustering domain-oriented tag aided topical model
  • 相关文献

参考文献22

  • 1L-J Zhang,J Zhang,H Cai.Services Computing[M].Beijing:Tsinghua University,2007.
  • 2Chen Liang,Hu Liukai,Zheng Zibin,et al.WTCluster:Utilizing tags for Web services clustering[A].Proceedings of International Conference on Service-Oriented Computing[C].Berlin:Springer,2011.204-218.
  • 3Elgazzar K,Hassan A E,Martin P.Clustering WSDL documents to bootstrap the discovery of web services[A].Proceedings of International Conference on Web Services[C].USA:Piscataway,2010.147-154.
  • 4Yu Q,Rege M.On service community learning:A co-clustering approach[A].Proceedings of IEEE International Conference on Web Services[C].USA:Piscataway,2010.283-290.
  • 5Liu Jianxiao,He Keqing,Wang Jian,et al.A clustering method for web service discovery[A].Proceedings of International Conference on Services Computing[C].USA:Piscataway,2011.729-730.
  • 6Cassar G,Barnaghi P,Moessner K.Probabilistic methods for service clustering[A].Proceedings of International Workshop on Semantic Web Service Matchmaking and Resource Retrieval[C].Shanghai:SRI,2010.4-20.
  • 7Blei D M,Ng A Y,Jordan M I.Latent dirichlet allocation[J].Journal of Machine Learning Research,2003,3(2):993-1022.
  • 8Rosen-Zvi M,Griths T,Steyvers M,Smyth P.The author-topic model for authors and documents[A].Proceedings of the 20th Conference on Uncertainty in Artificial Intelligence[C].USA:UAI,2004.487-494.
  • 9Wang Jian,Zhang Jia,Hung P C K,et al.Leveraging fragmental semantic data to enhance services discovery[A].Proceedings of the 13th International Conference on High Performance Computing and Communications[C].Piscataway,NJ:IEEE,2011.687-694.
  • 10Chen L,Wang Y,Yu Q,et al.WT-LDA:User Tagging Augmented LDA for Web Service Clustering[M].USA:Service-Oriented Computing,2013.162-176.

二级参考文献56

  • 1吴健,吴朝晖,李莹,邓水光.基于本体论和词汇语义相似度的Web服务发现[J].计算机学报,2005,28(4):595-602. 被引量:218
  • 2邝砾,邓水光,李莹,吴健,吴朝晖.使用倒排索引优化面向组合的语义服务发现[J].软件学报,2007,18(8):1911-1921. 被引量:24
  • 3叶蕾,张斌.基于功能语义的Web服务发现方法[J].计算机研究与发展,2007,44(8):1357-1364. 被引量:24
  • 4Deerwester S, Dumais S, Furnas G. Indexing by latent semantic analysis[ J]. Journal of the American Society for Information Science, 1990, 41:391 -407
  • 5Hofman T. Probabilistic latent semantic indexing[ C]//Gey Fredric,Hearst Marti, Tong Richard. Proceedings of the 22nd Annual International ACM SIGIR Conference. New York: ACM, 1999:50 - 57
  • 6Blei D M, Ng A Y, Jordan M. Latent dirichlet allocation [J]. Journal of Machine Learning Research,2003,3 ( 1 ) :993 - 1022
  • 7Li W, McCallum A. Pachinko allocation: DAG-structured mixture models of topic correlations [ C ]//Cohen William, Moore Andrew. Proceedings of the 23rd International Conference on Machine Learning. New York : ACM ,2006:577 - 584
  • 8Blei D M, Lafferty J D. Dynamic topic models[ C ]//Cohen William, Moore Andrew. Proceedings of the 23rd International Conference on Machine Learning. New York : ACM ,2006 : 113 - 120
  • 9Shawe-Taylor J,Cristianini N. Kernel methods for pattern analysis [M]. United Kingdom: Cambridge University Press, 2004 : 344 - 372
  • 10Stollberg M, Hepp M, Hoffmann J. A caching mechanism for semantic Web service discovery//Proceedings of the 6th International Semantic Web Conference. Busan, Korea, 2007, 480-493

共引文献100

同被引文献178

引证文献30

二级引证文献119

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部