期刊文献+

一种基于区域和关键点特征相结合的双目视觉人体检测与定位方法 被引量:3

A Method of Human Detection and Location Based on Binocular Vision Combined with Region and Key Points
下载PDF
导出
摘要 人体检测与定位是计算机视觉领域的研究热点与难点之一,其被广泛应用于人机交互和人机协作等诸多领域。提出一种基于区域和关键点特征相结合的双目视觉人体检测与定位方法,首先利用HOG与SVM相结合的检测框架实现人体的检测,然后利用MSER算法提取人体区域的MSER特征,最后利用局部不变算子ORB描述MSER区域的特征,进而实现立体匹配与人体的定位。实验表明本文提出的方法不仅能缩小特征检测的范围,而且能提高特征之间匹配的准确度。 Human detection and location is one of the research hotspots and difficulties in the field of computer vision. It is widely used in many fields such as human-computer interaction and human-computer collaboration. A method of human detection and location based on binocular vision combined with region and key points is proposed in this study. First of all, HOG combined with SVM detection framework is adopted to realize the human detection. Then, the MSER algorithm is applied to extract feature of the human. Finally the ORB local invariant operator is used to describe MSER region feature, and ultimately realize stereo matching and positioning of the human. The experiments show that the proposed approach not only narrows the scope of feature detection, but enhances the accuracy of the matched features.
作者 赵霞 袁家政
出处 《北京联合大学学报》 CAS 2015年第3期38-43,48,共7页 Journal of Beijing Union University
基金 国家科技支撑课题(2014BAK08B02 2015BAH55F03) 国家自然科学基金(61271369 61372148) 北京市自然基金(4152016 4152018) 北京联合大学"人才强校项目"(BPHR2014E02 BPHR2014A04)
关键词 双目视觉 人体定位 区域特征 关键点特征 Binocular vision Human location Region feature Key point
  • 相关文献

参考文献22

  • 1Mobus B, Joos A, Kolbe U. Multi-target multi-object radar tracking[ C ]// IEEE Intelligent Vehicles Symposium, 2003:489 - 494.
  • 2Wang J,Gao F, Shi S, et al. A New Method for Distance and Relative Velocity Measurement in Vehicle Collision Warning System [ C ]// IEEE Intelligent Systems Design and Applications, 2006 : 1142 - 1147.
  • 3Chen Y L, and Wang C A. Vehicle Safety Distance Warning System: A Novel Algorithm for Vehicle Safety Distance Calculating Between Moving Cars[ C ]// IEEE Vehicular Technology Conference, 2007:2570 -2574.
  • 4Lim Y C, Lee C H, Kwon S, et al. Distance estimation algorithm for both long and short ranges based on stereo vision system [ C ]// IEEE Intelligent Vehicles Symposium, 2008 : 841 - 846.
  • 5Mcrosoft. Kinect for windows. URL : http ://www. microsoft, com/eu-us/kinectforwindowsl.
  • 6Liu H, Zhou J. Motion planning for human-robot interaction based on stereo vision and sift [ C ]// IEEE International Conference on Systems, Man and Cybernetics, 2009:830 -834.
  • 7Mammeri A, Boukerche A, Zhao M. Keypoint-based binocular distance measurement for pedestrian detection system [ C ]// Proceedings of the fourth ACM international symposium on Development and analysis of intelligent vehicular networks and applications,2014 : 9 - 15.
  • 8Petrovib E, Leu A, Ristis-Durrant D, et al. Stereo vision-based human tracking for robotic follower[ J]. Int J Adv Robotic Sy, 2013, 10(230) :105 - 126.
  • 9Jia S, Zhao L, Li X, et al. Autonomous robot human detecting and tracking based on stereo vision[ C ]//Mechatronics and Automation (ICMA) , 2011 International Conference on IEEE, 2011:640-645.
  • 10项荣,应义斌,蒋焕煜,彭永石.基于双目立体视觉的番茄定位[J].农业工程学报,2012,28(5):161-167. 被引量:56

二级参考文献29

  • 1郑小东,赵杰文,刘木华.基于双目立体视觉的番茄识别与定位技术[J].计算机工程,2004,30(22):155-156. 被引量:22
  • 2潘锋,王宣银.基于支持向量机的复杂背景下的人体检测[J].中国图象图形学报(A辑),2005,10(2):181-186. 被引量:16
  • 3宋健,张铁中,徐丽明,汤修映.果蔬采摘机器人研究进展与展望[J].农业机械学报,2006,37(5):158-162. 被引量:216
  • 4Schauland S, Park S B, Zhang Yan. Vision-based Pedestrian Detection Improvement and Verification of Feature Extraction Methods and SVM-based Classification[C]//Proc. of IEEE Intelligent Transportation Systems Conference. [S. l.]: IEEE Press, 2006: 97-102.
  • 5Dalai N. Finding People in Images and Videos[D]. Grenoble, France: The French National Institute for Research in Computer Science and Control, 2006.
  • 6Gary Bradski, Adrian Kaehler著,于仕琪,刘瑞祯译.学习OpenCV[M].北京:清华大学出版社,2009.
  • 7AZUMA R, BAIIJ.OT Y,BEHRINGEF. K, et al. A survey of aug-mented reality [ J ]. Teleoperators and Virtual Environ-ments,1997,6(4) :355-385.
  • 8ABAWI D F, BIENWAM) J, DOKNEK K. Accuracy in optical tracking with fiducial markers : an accuracy function for ARToolKit [C] //Proc of the 3rd IEEE/ACM International Symposium on Mixed and Augmented Reality. Washington DC: IEEK Computer Society, 2004:260-261. '.
  • 9FIALA M. ARTag, a fiducial marker system using digital techniques [C ] //Proc of IEEE Conference on Computer Vision and Pattern He> lognition. Washington DC:IEEE Computer Society,2005 :590-596.
  • 10HUANG Fen, ZHOU Yu , YU Yao,et al. Piano AR : a markerless augmented reality imsed piano teaching system [ C ] //Proc of Intelligent Human-Machine Systems and Cybemelics. 2011 :47-52.

共引文献127

同被引文献9

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部