期刊文献+

基于键盘行为数据的用户身份识别 被引量:3

User authentication based on keystroke dynamics
下载PDF
导出
摘要 用户击键行为作为一种生物特征,具有采集成本低、安全性高的特点。然而,现有的研究方法和实验环境都是基于实验室数据,并不适用于极度不平衡的真实数据。比如,在实验室数据上效果出色的分类算法在真实数据上却无法应用。针对此问题,提出了基于真实击键行为数据的用户识别算法。该方法将聚类算法和距离算法结合起来,通过比较新来的击键行为和历史击键行为相似度以实现用户识别。实验结果表明,该算法在100名用户的3 015条真实击键记录组成的数据集上准确率达到88.22%,在投入实际应用后,随着样本集的增大算法的准确率还可以进一步提升。 Keystroke dynamics, part of biometrics, is featured as low cost and high security. However, existing researches and experiments are mostly based on laboratory data, which are not appropriate for extremely unbalanced real data. For example, classification algorithms are not applicable to real data due to the extreme imbalance of normal and abnormal samples. In order to solve this problem, a keystroke dynamics method was proposed for real data, which combined classification algorithm with distance algorithm. It authenticated users by comparing user” s new behavior with historical behavior. Experimental results show that this method has an accuracy rate of 88. 21% on the real dataset of 3 015 records of 100 users. It is expectable that the performance will be better with the expansion of data set.
出处 《计算机应用》 CSCD 北大核心 2015年第A01期110-112,129,共4页 journal of Computer Applications
基金 国家自然科学基金重大研究计划项目(91218301) 国家自然科学基金青年项目(60903201) 中央高校基本科研业务专项项目(JBK140129)
关键词 键盘行为 用户识别 欧氏距离 K-MEANS聚类 生物认证 keystroke dynamics user authentication Euclidean distance k-means clustering biometric authentication
  • 相关文献

参考文献13

  • 1张治元,田国忠.基于击键韵律的身份认证模型设计与实现[J].计算机应用,2009,29(10):2799-2801. 被引量:8
  • 2王晅,陈伟伟,马建峰.基于遗传算法和灰色关联分析的击键特征识别算法[J].计算机应用,2007,27(5):1054-1057. 被引量:3
  • 3MONROSE F, REITER M, WETZEL S. Password hardening based on keystroke dynamics[ C]// Proceedings of the 6th ACM Conference on Computer and Communications Security. New York: ACM, 1999:73-82.
  • 4MONROSE F, RUBIN A D. Keystroke dynamics as a biometric for authentication[ J]. Future Generation Computer Systems, 2000, 16: 351 -359.
  • 5KILLOURHY K S, MAXION R A. Comparing anomaly-detection al- gorithms for keystroke dynamics[ C]//DSN '09: Proceedings of the 2009 IEEE/IFIP International Conference on Dependable Systems & Networks. Piscataway: IEEE, 2009: 125- 134.
  • 6GIOT R, EI-ABED M, ROSENBERGER C. Keystroke dynamics with low constraints SVM based passphrass enrollment[ C]// Pro- ceedings of the IEEE 3rd International Conference on Biometrics: Theory, Applications and Systems. Washington DC, 1EEE Comput- er Society, 2009:425-430.
  • 7DOUHOU S, MAGNUS J R. The reliability of user authentication through keystroke dynamics[ J]. Statistica Neerlandica, 2009, 63 (4) : 432 -449.
  • 8ZHONG Y, DENG Y, JAIN A K. Keystroke dynamics for user au- thentication[ C]// Proceedings of the 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE, 2012:117 - 123.
  • 9FRANCESCO B, GUNETrI D, PICARDI C. User authentication through keystroke dynamics[ J]. ACM Transactions on Information and System Security, 2002, 5(4) : 367 -397.
  • 10AHMED A A, TRAORE I. Biometric recognition based on free- text keystroke dynamics[ J]. IEEE Transactions on Cybernetics, 2014, 44(4) : 458 -472.

二级参考文献16

  • 1WOOD J D.生物认证[M].陈菊明,邓启威,等译.北京:清华大学出版社,2004.
  • 2ULUDAG U, PANKANTI S, PRABHAKAR S, et al. Biometric cryptosystems: Issues and challenges[ C]// Proceedings of IEEE Conference on Multimedia Information Retrieval. [ S. l. ]: IEEE Press, 2004:948 - 960.
  • 3SUTCU Y, QIMING L, MEMON N. Protecting biometric templates with sketch: Theory and practice[ J]. IEEE Transactions on Information Forensics and Security, 2007, 2(3) : 503 - 512.
  • 4KACHOLIA V, PANDIT S. Biometric authentication using random distributions[ C/OL]. [ 2009 - 01 -01 ]. http://shashankpandit. com/papers/bioart/paper. pdf.
  • 5GAINES R,LISOWSKI W,PRESS S.Authentication by keystroke timing:some preliminary results[EB/OL].http://www.rand.org/pubs/reports/2006/R2526.pdf,2006-10-10.
  • 6LEGGETT J,WILLIAMS G,USNICK J.Dynamic identity verification via keystroke characteristics[J].International Journal of Man-Machine Studies,1991,35(6):859-870.
  • 7SALEH B,CHARLES S,BASSAM H.Computer-access security systems using keystroke dynamics[J].IEEE Transaction on Pattern Analysis and Machine Intelligence,1990,12(12):1217-1222.
  • 8DE RU WG,ELOFF JHP.Enhanced password authentication through fuzzy logic[J].IEEE Expert,1997,12(6):38-45.
  • 9TAPIADOR M.Fuzzy keystroke Biometrics on Web Security[A].AutoID'9 Proceedings,Workshop on Automatic Identification Advanced Technologies[C].IEEE,1999.133-136.
  • 10BROWN M,ROGERS SJ.User identification via keystroke characteristics of typed names using neural networks[J].International Journal of Man-Machine Studies,1993,39(6):999-1014.

共引文献9

同被引文献22

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部