摘要
拟线性双曲系统主要应用在精密机械控制和流体力学等领域,拟线性双曲系统建立在复解析函数的基础上,对系统进行复分析和稳定性正解研究,可以提高系统的控制精度。进行拟线性双曲系统复函数自伴扰动稳定性正解研究,求得到拟线性双曲复解析函数的自伴扰动稳定性正解的对称广义中心的稳定性平衡点,根据拟线性双曲复解析函数在双边界条件下正解稳定性优化条件,得到常微分复解析函数的松弛解,研究得出,在基于广义特征值分解非线性双曲方程张成子空间中,采用复函数分析的拟线性双曲复解析函数自伴扰动正解具有全局稳定性。
The quasi linear hyperbolic system is mainly used in precision mechanical control and fluid mechanics and other fields, quasilinear hyperbolic systems are based on uplink complex analytic function, carry on the system of complex analysis and stability study of positive solution, can improve the control accuracy of the system. For quasi linear hyperbolic sys- tems with complex function from the disturbance stability of positive solutions are obtained. The stability of the equilibrium point of quasi linear hyperbolic complex analytic function of self adjoint perturbation stability of positive solutions for generalized central symmetric, based on quasi linear hyperbolic complex analytic function in the dual boundary conditions are stable solution of optimization condition, the research obtains the solution, relaxation differential complex analytic function, based on the generalized eigenvalue decomposition of nonlinear hyperbolic equations Zhang He space, using complex function analysis of quasi linear hyperbolic complex analytic function of self adjoint perturbation stability with global stability of positive solutions.
出处
《科技通报》
北大核心
2015年第8期12-14,共3页
Bulletin of Science and Technology
关键词
拟线性
双曲系统
复解析函数
复分析
quasilinear
hyperbolic system
complex analytic function
complex analysis