期刊文献+

拟线性双曲系统复函数自伴扰动稳定性正解 被引量:1

Self Adjoint Perturbation Stability Positive Solutions of Quasilinear Hyperbolic Systems Complex Function
下载PDF
导出
摘要 拟线性双曲系统主要应用在精密机械控制和流体力学等领域,拟线性双曲系统建立在复解析函数的基础上,对系统进行复分析和稳定性正解研究,可以提高系统的控制精度。进行拟线性双曲系统复函数自伴扰动稳定性正解研究,求得到拟线性双曲复解析函数的自伴扰动稳定性正解的对称广义中心的稳定性平衡点,根据拟线性双曲复解析函数在双边界条件下正解稳定性优化条件,得到常微分复解析函数的松弛解,研究得出,在基于广义特征值分解非线性双曲方程张成子空间中,采用复函数分析的拟线性双曲复解析函数自伴扰动正解具有全局稳定性。 The quasi linear hyperbolic system is mainly used in precision mechanical control and fluid mechanics and other fields, quasilinear hyperbolic systems are based on uplink complex analytic function, carry on the system of complex analysis and stability study of positive solution, can improve the control accuracy of the system. For quasi linear hyperbolic sys- tems with complex function from the disturbance stability of positive solutions are obtained. The stability of the equilibrium point of quasi linear hyperbolic complex analytic function of self adjoint perturbation stability of positive solutions for generalized central symmetric, based on quasi linear hyperbolic complex analytic function in the dual boundary conditions are stable solution of optimization condition, the research obtains the solution, relaxation differential complex analytic function, based on the generalized eigenvalue decomposition of nonlinear hyperbolic equations Zhang He space, using complex function analysis of quasi linear hyperbolic complex analytic function of self adjoint perturbation stability with global stability of positive solutions.
作者 樊艺
出处 《科技通报》 北大核心 2015年第8期12-14,共3页 Bulletin of Science and Technology
关键词 拟线性 双曲系统 复解析函数 复分析 quasilinear hyperbolic system complex analytic function complex analysis
  • 相关文献

参考文献7

二级参考文献37

  • 1孙澎涛.非线性双曲积分微分方程有限元方法的收敛性分析[J].工程数学学报,1994,11(2):76-82. 被引量:5
  • 2Dong-yangShi Shi-pengMao Shao-chunChen.AN ANISOTROPIC NONCONFORMING FINITE ELEMENT WITH SOME SUPERCONVERGENCE RESULTS[J].Journal of Computational Mathematics,2005,23(3):261-274. 被引量:187
  • 3李德元 陈光南.抛物型方程差分方法引论[M].北京:科学出版社,1998..
  • 4Douglas J Jr, Dupont T. Alternating direction Galerkin method on rectangles. Proc. Symposium on Numerical Solution of Partial Differential Equation Ⅱ [C]. B. Hubbarded. Academic Press. New York, 1971, 133-214.
  • 5Dendy J E, Fairweather G. Alternating-Galerkin methods for parabolic and hyperbolic problems on rectangular polygon[J]. SIAM J. Numer. Anal., 1975, 12(2): 144-162.
  • 6Fernandes R I, Fairweather G. An alternating-direction Galerkin method for a class of second-order hyperbolic equation in two space variables[J]. SIAM J. Numer. Anal., 1991, 28(5): 1265-1281.
  • 7Cui Xia. The alternation-direction finite element methods and relative numerical analysis for some types of evolution equation[D]. Jinan: Shangdong University, 1999.
  • 8Liuxiaohua. Finite element methods and generalized difference methods for evolution equation[D]. Jinan: Shangdong University , 2001.
  • 9Wheeler M F. A priori L2 error estimates for Galerkin approximations to parabolic partial differential equations[J]. SIAM J. Numer. Anal., 1973, 10: 723-759.
  • 10Baker G A. Error estimates for finite element methods for second order hyperbolic equations[J]. SIAM J. Numer. Anal., 1976, 13: 723-759.

共引文献22

同被引文献12

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部