期刊文献+

基于量子群聚类的云存储调度执行开销建模 被引量:2

Cost Scheduling Modeling Based on Cloud Storage Quantum Group Clustering
下载PDF
导出
摘要 传统方法使用量子群遗传进化方法进行云存储系统任务调度的执行开销建模,在数据汇聚和协议传输中没有考虑量子态的相干性和感知节点的方向性,不能全局搜索最优量子位,执行开销不能实现最小化。提出一种基于量子群聚类的云存储调度最小执行开销建模算法,首先进行量子群聚类进化策略和云存储系统任务调度模型总体设计,设计基于量子群聚类的云存储系统任务调度分配协议,进行有效的资源调度设计,整合云计算中心资源,提高资源利用率,减少任务执行时间。仿真结果得出,该算法能使云存储系统任务调度执行开销与任务规模的匹配性能最佳,性能优于传统算法,在云存储信息管理系统等领域具有较好的应用价值。 Execution cost modeling using the traditional method of quantum group genetic evolutionary method for cloud storage system task scheduling, the coherence of quantum states and sensor nodes are not considered in the direction of data aggregation and transmission protocol, not global search optimal model, so it cannot realize the minimization of the execu- tion overhead. A minimum cost scheduling algorithm is proposed based on clustering of cloud storage quantum group, first quantum cluster evolution strategy and task scheduling model of cloud storage system overall design, scheduling tasks cloud storage system protocol of quantum groups is designed based on clustering, resource scheduling is designed effectively, the cloud computing center resources integrated, resource utilization rate is improved, the execution time of task is reduced. The simulation results show that, the algorithm can make the cloud storage system task scheduling performance overhead, and optimal matching task scale is obtained, performance is better than the traditional method, it has good application value in the field of cloud storage management information system.
作者 康英健 马蕾
出处 《科技通报》 北大核心 2015年第8期87-89,共3页 Bulletin of Science and Technology
关键词 云存储 构架 拓扑结果 任务调度 cloud storage architecture topology results task scheduling
  • 相关文献

参考文献6

二级参考文献28

  • 1王小非,方明.一种基于调度簇树的周期性分布实时任务调度算法[J].计算机科学,2007,34(3):256-261. 被引量:3
  • 2HAYES B. Cloud computing [ J]. Communications of the ACM, 2008,51 (7) :9-11.
  • 3LIN G,DASMALCHI G,ZHU J. Cloud computing and IT as a ser- vice: opportunities and challenges[ C ]//Proc of the 6th IEEE Inter- national Conference on Web Services. Los Alamitos : IEEE Computer Society, 2008 : 1 - 5.
  • 4NAMJOSHI J, GUPTE A. Service oriented architecture for cloud based travel reservation software as a service [ C ]//Proc of the 2009IEEE International Conference on Cloud Computing. Washington DC : IEEE Computer Society,2009 ; 147-150.
  • 5ARMBRUST M, FOX A, GRIFFITH R, et al. Above the clouds: a Berkeley view of cloud computing [ EB/OL ]. 2009. http ://www. ee- cs. berkeley, edu/Pubs/TechRpts/2009/EECS-2009-28, html.
  • 6TAYAL S. Tasks scheduling optimization for the cloud computing sys- tems[ J]. International Journal of Advanced Engineering Sci- ences and Technologies ,2011,5 (2) : 111-115.
  • 7HANG Ruay-shiung, HEN Po-hung. Complete and fragmented repli- ca selection and retrieval in data grids[ J]. Future Generation Corn- puter Systems,2007,23(4) : 536-546.
  • 8RAHMAN R M, ALHAJJ R, BARKER K. Replica selection strate- gies in data grid[ J]. Journal of Parallel and Distributed Compu- ting,2008,68(12) :1561-1574.
  • 9CHAUHAN S S,JOSI-II R C. QoS guided heuristic algorithms for grid task scheduling [ J ]. International Joumal of Computer Applica- tions,2010,2(9) :24-31.
  • 10Topcuoglu H,Hariri S,Wu Min-you.Performance-Effective and Low-Complexity Task Scheduling for Heterogeneous Computing[J].IEEE Transactions on parallel and distributed systems,2002,13(3):260-274.

共引文献77

同被引文献22

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部