摘要
以微小型无人机翼型研究为背景,开展了低雷诺数翼型的气动特性及优化设计研究。首先采用求解雷诺平均N-S方程的有限体积法,对典型低雷诺数下NACA0012翼型标模进行数值模拟,对比分析了SA、SST k-ω湍流模型、低雷诺数修正SST k-ω模型以及k-kL-ω转捩模型的适用性和准确性。然后通过对低雷诺数下NACA0012翼型表面流场结构和流动特征的详细分析,提出了基于控制流动转捩位置改善翼型上边界层形态的低雷诺数翼型设计思想。最终基于转捩模型对SD7037翼型进行了多目标优化设计,设计结果表明优化后翼型气动性能得到了较大改善,最大升阻比可以提高约58.23%,在0°迎角下翼型上表面层流区域面积增大约26.8%,在4°迎角下翼型上表面流动转捩位置前移约0.15倍弦长,下游流动亦由优化前完全分离状态改变为实现流动再附,进一步验证了低雷诺数翼型设计思路的可靠性与可行性。
Based on the research of the micro air vehicle (MAV), the aerodynamic performances and optimization design of the low Reynolds number airfoil were numerically simulated and studied. To verify the accuracy and reliability respectively of the SA, SST k-ω turbulence model, low Reynolds corrected SST k-ω model and k-kL-ω transition model, finite volume method was used to solve the 2D Reynoldsaveraged NavierStokes equations for the numerical simulations of the fluid flow around NACA0012 in representative Reynolds numbers. Then the low Reynolds number flow characteristics of the fluid structures and flow mechanism around NACA0012 were studied. And at last an optimization mind for the low Reynolds number airfoil design was proposed, tested by a multiobjective optimization case of SD7037. The optimization results showed that 58. 23% increment of lift to drag ratio, 26. 8% increment of laminar flow area at α= 0°, 0. 15c forward movement of transition position and the reattachment downstream can be achieved; this can verify the reliability and feasibility of the optimization mind.
出处
《西北工业大学学报》
EI
CAS
CSCD
北大核心
2015年第4期580-587,共8页
Journal of Northwestern Polytechnical University
基金
国家高技术(2013AA7052002)
国家自然科学基金(11302178)资助
关键词
微小型无人机
低雷诺数
转捩模型
边界层
流场结构
流动特征
多目标优化设计
airfoils, analysis of variance (ANOVA), angle of attack, boundary layers, computational fluid dynamics, computer simulation, design, drag coefficient, finite volume method, flow fields, flow separation, flowcharting, laminar flow, liftdrag ratio, micro air vehicle (MAV), multiobjective optimization, Navier-Stokes equations, optimization, pressure distribution, reliability, Reynolds number, turbulence models, two dimensional
flow characteristics
fluid structure, low Reynolds number, transition model