期刊文献+

基于剪式线性阵列可展结构对称性的动力学分析方法研究 被引量:5

Dynamics Analysis Method Study Based on Linear Array Deployable Structure Symmetry of Scissor-Like Element
下载PDF
导出
摘要 为了研究剪式线性对称阵列可展结构的动力学特性,基于杆系能量泛函,建立剪式单元的等效质量矩阵,继而组装得到剪式可展结构的等效质量矩阵。考虑剪式铰的基本约束关系,利用机械系统动力学方程的增广法建立了适用于任意单元个数的剪式线性阵列可展结构的动力学模型。采用一种高精确度的直接违约校正法对系统的坐标和速度进行修正,避免了数值结果的发散。最后通过多步长Runge-Kutta法完成数值仿真,获得了该机构运动过程中各节点位置、速度及加速度随时间变化的曲线。结果表明:由于剪式可展结构的几何约束以及外载的影响,导致各节点沿阵列方向其对称特性表现较好;同时,在受力一侧,各节点沿x轴动力学特性变化较明显,而非受力一侧,速度、加速度等物理量变化幅度很小。 In order to research the dynamic characteristics of the scissor linear array deployable structure, the equivalent mass matrix of scissor unit is established based on linkage energy functional, which is assembled to obtain the equivalent mass matrix of the scissor pantographic structure. The dynamic model of scissor linear array deployable structure established is applied to any unit number using the augmented method of mechanical system dynamics equation. We use a high accuracy direct default correction method to modify the coordinates and speed of the system and avoid the divergence of numerical results. We use variable step RungeKutta method for numerical calculation;the laws of the structure, such as velocity and acceleration, can be obtained. The results show that the nodes of scissor deployable structure have good symmetrical performance along the array direction because of the influence of the geometric constraints and external load; meanwhile, all nodes at the side of the force, the dynamic change is obvious, without force side, however, only a small change along the x axis in speed, acceleration and other physical quantities.
出处 《西北工业大学学报》 EI CAS CSCD 北大核心 2015年第4期665-671,共7页 Journal of Northwestern Polytechnical University
基金 国家自然科学基金(51175422)资助
关键词 加速度 计算 动力学 几何学 雅克比矩阵 矩阵代数 机构 折叠机构 龙格库塔法 泰勒级数 速度 直接违约校正法 线性阵列 剪式单元 对称特性 acceleration, calculations, dynamics, geometry, Jacobian matrices, matrix algebra, mechanisms, pantographs, Runge Kutta methods, Taylor series, velocity direct default correction, linear array, scissor-like element (SLE), linear array, symmetrical features
  • 相关文献

参考文献14

  • 1李博,王三民,袁茹.剪式单元直线阵列可展结构的稳定性[J].哈尔滨工业大学学报,2014,46(9):50-54. 被引量:4
  • 2Pellegrino S. Deployable Structures [ M ]. New York, USA : Springer, 2001.
  • 3Gantes C J. Deployable Structures: Analysis and Design[ M ]. Southampton, England: Wit Press, 2001.
  • 4Langbecker T. Kinematic Analysis of Deployable Scissor Structures [ J ]. International Journal of Space Structures, 1999, 14 ( 1 ) : 1-15.
  • 5Chen Yan, You Zhong, Tarnai T. Three Fold-Symmetric Bricard Linkages for Deployable Structures [ J ]. International Journal of Solids and Structures, 2005, 42 : 2287-2230.
  • 6Gan W W, Pellegrino S. Numerical Approach to the Kinematic Analysis of Deployable Structures Forming a Closed LOOP [J].Mechanical Engineering Science, 2006, 220 : 1045-1056.
  • 7黄铁球,吴德隆,阎绍泽.带间隙伸展机构的非线性动力学建模[J].中国空间科学技术,1999,19(1):7-13. 被引量:18
  • 8陈向阳,关富玲.六棱柱单元可展天线结构设计[J].空间科学学报,2001,21(1):68-72. 被引量:10
  • 9纪斌,王怀磊,金栋平.非对称平面剪铰结构展开过程分析与仿真[J].工程力学,2013,30(7):7-13. 被引量:4
  • 10Raskin I. Stiffness and Stability of Deployable Pantographic Columns [ M ]. University of Waterloo, 2000.

二级参考文献32

  • 1GUAN Fu-ling,SHOU Jian-jun,HOU Guo-yong,ZHANG Jing-jie.Static analysis of synchronism deployable antenna[J].Journal of Zhejiang University-Science A(Applied Physics & Engineering),2006,7(8):1365-1371. 被引量:8
  • 2潘振宽,多体系统动力学与控制,1996年
  • 3Yen J,Comput Methods Appl Mech Eng,1993年,104卷,317页
  • 4Yen J,Mech Struct Mach,1991年,19卷,1期,41页
  • 5Bao R,Generalized Inverse of Matrices and Its Applicatioms,1971年
  • 6文荣,导弹与航天运载技术,1996年,2期,1页
  • 7Li G X,Int J Nonlinear Mechanics,1990年,25卷,4期,417页
  • 8Junjiro Onoda,J Spacecraft Rockets,1999年,33卷,3期,41页
  • 9Pineo E P.Expandable space framing[J].ProgressiveArchitecture,1962,43(6):154―155.
  • 10Yenal A,Charis J G,Werner S.A novel adaptive spatialscissor-hinge structural mechanism for convertible roofs[J].Engineering Structures,2011,33:1365―1376.

共引文献51

同被引文献29

引证文献5

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部