期刊文献+

用于有机朗肯循环的三柱塞泵运行性能实验 被引量:7

Experiment on Tri-plunger Pump Performance in Organic Rankine Cycle System
下载PDF
导出
摘要 选用三柱塞泵,建立有机朗肯循环(ORC)实验平台。选用涡旋式膨胀机作为热功转换设备,采用三氟二氯乙烷(R123)作为工质,在140℃热源下开展实验,考察工质泵在不同工况下的运行性能。研究结果表明,三柱塞泵实际运行效率为22%-30%,是已有文献报道水平的1.5-4.3倍。工质泵等熵效率和机械效率分别为60%-69%和37%-45%。工质泵运行参数偏离额定参数是导致机械效率偏低的主要原因。工质泵发生气蚀会导致其等熵效率减小,同时还会造成工质流量下降。对于本实验台,防止气蚀发生的工质泵入口临界过冷度为21℃。 The organic Rankine cycle (ORC) is one of the key technologies to fulfill the efficient utilization of low grade heat sources. Working fluid circulating pump is the main power consumption component of ORC system. However, the overall pump efficiency as low as 7% -20% was reported in the experimental study. To solve this problem, an experimental system for heat recovery from low grade heat source was constructed, R123 was selected as working fluid, a scroll expander was used to produce work, and a tri-plunger pump was selected as working fluid circulating pump. The conductive oil was heated by electric heater to simulate low grade heat source. The maximum expander shaft power and thermal efficiency were 2. 16 kW and 5.35% at the heat source temperature of 140~C, respectively. The range of overall pump efficiency was about 22% - 30% , which was 1.5 - 4. 3 times of that reported in the references. The isentropic efficiency and mechanical efficiency of the pump were 60% ~ 69% and 37% ~45%, respectively. Analysis results showed that the reason for low mechanical efficiency of the pump was due to the fact that the pump operating parameters were deviated far from the rated parameters. Additionally, cavitation could weaken pump isentropic efficiency and reduce the working fluid flow rate at the same time. Critical sub-cooling temperature as high as 21~C was obtained at the pump inlet to prevent the cavitation. The study results identified that tri-plunger pump can be recommended in the ORC system.
出处 《农业机械学报》 EI CAS CSCD 北大核心 2015年第8期367-371,378,共6页 Transactions of the Chinese Society for Agricultural Machinery
基金 国家重点基础研究发展计划(973计划)资助项目(2011CB710703) 国家自然科学基金国际合作与交流资助项目(51210011) 中央高校基本科研业务费专项资金资助项目(JB2014215)
关键词 三柱塞泵 低品位热源 有机朗肯循环 泵效率 临界过冷度 Tri-plunger pump Low grade heat source Organic Rankine cycle Pump efficiency Critical sub-cooling
  • 相关文献

参考文献20

  • 1杨凯,张红光,张健,杨富斌,王震,范伯元.变工况柴油机余热回收系统中混合工质模拟研究[J].农业机械学报,2013,44(7):39-44. 被引量:11
  • 2Yamamoto T, Furuhata T, Arai N, et al. Design and testing of the organic Rankine cycle [J]. Energy, 2001,26(3) :239 -251.
  • 3Manolakos D, Papadakis G, Kyritsis S, et al. Experimental evaluation of an autonomous low-temperature solar Rankine cycle system for reverse osmosis desalination [ J ]. Desalination, 2007, 203 ( 1 - 3 ) : 366 - 374.
  • 4Wang X D, Zhao L, Wang J L, et al. Performance evaluation of a low-temperature solar Rankine cycle system utilizing R245fa [J]. Solar Energy, 2010, 84(3) :353 -364.
  • 5Wang J L, Zhao L, Wang X D. An experimental study on the recuperative low temperature solar Rankine cycle using R245fa [ J ]. Applied Energy, 2012, 94:34 - 40.
  • 6胡冰,骆超,马伟斌.简化Kalina循环系统的热力学分析[J].农业机械学报,2014,45(4):214-219. 被引量:4
  • 7涂鸣,李刚炎,胡剑.不同工况柴油机排气余热回收系统试验与仿真![J].农业机械学报,2014,45(2):1-5. 被引量:7
  • 8Quoilin S, Van den Broek M, Declaye S, et al. Techno-economic survey of organic Rankine cycle (ORC) systems [ J 1 Renewable and Sustainable Energy Reviews, 2013, 22:168 -186.
  • 9A. Pumping work in the organic Rankine cycle [J]. Apply Thermal Engineering, 2013, 51(1 -2) :781 -786.
  • 10Reid A D. Low temperature power generation using HFE -7000 in a Rankine cycle [ D ]. San Diego: San Diego State University, 2010.

二级参考文献59

  • 1薄涵亮,刘咸定,刘桂玉.氨水混合物的相平衡和热力性质计算[J].西安交通大学学报,1989,23(3):49-56. 被引量:3
  • 2薄涵亮,刘咸定,刘桂玉,李昆.卡林那循环的热力学分析[J].西安交通大学学报,1989,23(3):57-63. 被引量:7
  • 3Dolz V, Novella R, Gareia A, et al. HD Diesel engine equipped with a bottoming Rankine cycle as a waste heat recovery system. Part 1 :study and analysis of the waste heat energy[ J ]. Applied Thermal Engineering,2012,36:269 -278.
  • 4Yu Guopeng, Shu Gequn, Tian Hua, et al. Simulation and thermodynamic analysis of a bottoming organic Rankine cycle (ORC) of diesel engine (DE) [ J]. Energy,2013,51:281 - 290.
  • 5Vaja I,Gambarotta A. Internal combustion engine (ICE) bottoming with organic rankine cycles (ORCs) [ J ]. Energy, 2010, 35(2) :1 084 - 1 093.
  • 6Chen H J, Goswami D Y, Rahman M M, et al. A supercritical Rankine cycle using zeotropic mixture working fluids for the conversion of low-grade heat into power [ J ]. Energy,2011,36 ( 1 ) :549 - 555.
  • 7Florian Heberle, Markus Preiringer, Dieter Bruggemann. Zeotropie mixtures as working fluids in organic Rankine cycles for low- enthalpy geothermal resources [ J ]. Renewable Energy ,2012,37 (1) :364 - 370.
  • 8Schuster A, Karellas S, Kakaras E. Energetic and economic investigation of organic Rankine cyele applications [ J]. Applied Thermal Engineering ,2009,29 ( 8 ) : 1 809 - 1 817.
  • 9Lakew A A, Bolland O. Working fluids for low-temperature heat source[ J]. Applied Thermal Engineering,2010,30(10) : 1 262 - 1 268.
  • 10Hung TC, Shai TY, Wang SK (1997) A review of Organic Rankine Cycles (ORCs) for the recovery of low grade waste heat. Energy 22:661-667.

共引文献26

同被引文献97

  • 1俞小莉,李婷.发动机热平衡仿真研究现状与发展趋势[J].车用发动机,2005(5):1-5. 被引量:39
  • 2Quoilin s, Aumann R, Grill A, et al. Dynamic modeling and optimal control strategy of waste heat recovery organic Rankine cycles [J]. Applied Energy, 2011, 88(6): 2183 -2190.
  • 3Zhou N J, Wang X Y, Chen Z, et al. Experimental study on organic Rankine cycle for waste heat recovery from low-temperature flue gas [J]. Energy, 2013, 55(1): 216 -225.
  • 4Xu J L, Liu C. Effect of the critical temperature of organic fluids on supercritical pressure organic Rankine cycles [ J]. Energy, 2013, 63(1) : 109 -122.
  • 5Zhang Y Q, Wu Y T, Xia G D, et al. Development and experimental study on organic Rankine cycle system with single-screw expander for waste heat recovery from exhaust of diesel engine [ J]. Energy, 2014, 77:499 -508.
  • 6Hettiarachchia H D M, Golubovica M, Worek W M, et al. Optimum design criteria for an organic Rankine cycle using low- temperature geothermal heat sources [ J ]. Energy, 2007, 32 (9) : 1698 - 1706.
  • 7Guo T, Wang H X, Zhang S J. Fluids and parameters optimization for a novel cogeneration system driven by low-temperature geothermal sources [J]. Energy, 2011, 36(5):2639-2649.
  • 8Liu Q, Duan Y Y, Yang Z. Performance analyses of geothermal organic Rankine cycles with selected hydrocarbon working fluids [J]. Energy, 2013, 63(1): 123 -132.
  • 9Wang X D, Zhao L, Wang J L, et al. Performance evaluation of a low-temperature solar Rankine cycle system utilizing R245fa [J]. Solar Energy, 2010, 84(3): 353 -364.
  • 10Manolakos D, Papadakis G, Kyritsis S, et al. Experimental evaluation of an autonomous low-temperature solarRankine cycle system for reverse osmosis desalination [ J]. Desalination, 2007, 203 ( 1 - 3) : 366 - 374.

引证文献7

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部