期刊文献+

基于ELM的作战方案样本验证及评估方法 被引量:1

Verification and Evaluation Method Research of Battle Scheme Samples Based on Extreme Learning Machine
下载PDF
导出
摘要 针对专家制定作战方案训练样本时容易受主观性影响的问题,提出了基于ELM的样本验证及评估方法。首先根据ELM建立作战方案样本的预测模型,然后更正错误标记的样本。仿真实验表明,利用ELM模型训练更正后的样本集能有效降低均方根误差值和提高预测的准确率。与RBF神经网络相比,训练ELM模型的时间缩短了98.8%,而且无需调节激活函数的参数就可以得到足够好的泛化性能。 In order to overcome the deficiency of subjectivity in deciding the label of battle scheme training samples by experts, a verification and evaluation method based on extreme learning machine (ELM) is proposed. The prediction model of battle scheme samples is constructed based on ELM and the wrong samples are corrected. The simulation experimental results show that lower root mean square error and better testing rate can be obtained by training ELM model on correct samples. In contrast with RBF neural network, the training time of ELM is reduced by 98.8% , and a good generalization ability can be obtained without parameters of activation function needing to be adjusted.
出处 《现代防御技术》 北大核心 2015年第4期204-209,共6页 Modern Defence Technology
关键词 超限学习机 径向基函数 作战方案 评估 泛化性能 extreme learning machine ( ELM ) radial basis function (RBF) battle scheme evaluation generalization ability
  • 相关文献

参考文献12

二级参考文献31

  • 1王静岩,郑建军,吴裕树.一种基于神经网络的作战方案评估方法[J].军事运筹与系统工程,2005,19(1):57-61. 被引量:13
  • 2赵敬宝,李斌,吴映军,王华命,季晓松.炮兵火力打击决策方案优选的方法[J].弹道学报,2005,17(4):79-83. 被引量:5
  • 3Zhongfei Zhang. Real-time Decision Support for Course of Action/Enemy Course of Action (COA/ECOA) Analysis[R]. Rome, NewYork, USA: Air Force Research Laboratory/IFTC, 2005.
  • 4HUANG Guangbin, ZHU Qinyu, SIEW C K. Extreme learning machine: theory and applications [J]. Neurocomputing, 2006, 70(1/2/3) : 489-501.
  • 5HUANG Guangbin, ZHU Qinyu, SIEW C K. Real-time learning capability of neural networks [J]. IEEE Transactions on Neural Network, 2006, 17 (2): 863- 878.
  • 6BARTLETT P L. The sample complexity of pattern classification with neural networks: The size of the weights is more important than the size of the network [J]. IEEE Transactions on Information Theory, 1998, 44 (2) : 525-536.
  • 7HUANG Guangbin, DING Xiaojian, ZHOU Hong- ming. Optimization method based extreme learning machine for classification [J]. Neurocomputing, 2010, 74(1/2/3): 155-163.
  • 8PLATT J. Fast training of support vector machines using sequential minimal optimization [M] // Advances in Kernel Methods: Support Vector Learning. Cambridge, MA, USA.. MIT Press, 1999: 185-208.
  • 9FLETCHER R. Practical methods of optimization: constrained optimization [M]. New York, USA: John Wiley and Sons, 1981: 2.
  • 10BLAKE C L, MERZ C J. UCI repository of machine learning databases [EB/OL]. (1998-04-02)[2010-02- 12]. http:///www, ics. uci. edu/- mlearn/MLRepository. html.

共引文献53

同被引文献72

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部