期刊文献+

融合块显著质心描述和多级关联的多目标跟踪 被引量:5

Block-level saliency centroid representation and multi-level association based multi-target tracking
下载PDF
导出
摘要 提出一种融合目标分块、显著质心建模和多级关联的多目标跟踪(multi-target tracking,MTT)方法,用于提高互遮挡、相似目标干扰场景中的跟踪鲁棒、准确性。利用自适应阈值背景差分检测运动区域;将目标区域分块,根据块中运动像素处背景差分值计算色彩显著度,建立运动、色彩显著质心模型;建立目标间、目标与运动检测间全局、块级数据关联,判别互遮挡目标及块,并据块遮挡矩阵更新目标模板;利用有效色彩和运动信息计算块质心转移向量及融合权值,获得目标全局质心转移向量以定位目标。实验结果表明该方法对互遮挡、相似目标干扰及外观变化的多目标均具有稳定跟踪性能。 A novel frame-work of multi-target tracking (MTT) based on block division, saliency centroid modeling and multiqevel association is presented to enhance the robustness and accuracy of tracker under occlu- sion among targets and disturbance caused by similar target. Selbadaptive threshold value based background difference is employed to detect motion regions. Based on block-division of target region, the block-level color saliency computed from background difference at each moving pixel, is utilized to model the centroid being with motion and color saliency. To discriminate the targets and blocks being in occlusion, the global and bolck associ- ations are established among tracked targets and motion regions, and the block occlusion matrix is built to up date the target model. The valid color and motion pixels are utilized to calculate the shifting vetor and fusion weight of each block centroid, then the global centroid shifting vetor is gained and used to locate the target. Ex- periments demonstrate that the proposed method is robust enough for tracking the multi-target in scenarios of occlusion, similar target disturbance and appearance change.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2015年第9期2182-2190,共9页 Systems Engineering and Electronics
基金 国家自然科学基金(61305011) 江苏省自然科学基金(BK20131342) 南京工程学院创新基金(CKJA201203 QKJB2011009)资助课题
关键词 多目标跟踪 显著质心 多级关联 块质心转移 multi-target tracking (MTT) saliency centroid multi-level association block centroid shifting
  • 相关文献

参考文献17

  • 1Yang H X, Shao L, Zheng F, et al. Recent advances and trends in visual tracking: a review[J]. Neurocomputing, 2011, 74 (18) : 3823 - 3831.
  • 2Tim Ellis.利用部分观测跟踪被遮挡的目标(英文)[J].自动化学报,2003,29(3):370-380. 被引量:2
  • 3Choeyctauen K, Kumhom P, Chamnongthai K. Robust ambigu ous target handling for visual object tracking[J]. International Journal Electronics and Communications, 2010,64(10) : 960 - 970.
  • 4Beyan C, Temizel A. Adaptive mean-shi[t for automated multi- object tracking[J]. IET Computer Vision, 2012,6(1) : 1- 12.
  • 5Cao X B, Shi Z R, Yan P K, et al. Tracking vehicles as groups in airborne videos[J]. Neurocomputing,2013,99(1) :38 - 45.
  • 6刘惟锦,章毓晋.基于Kalman滤波和边缘直方图的实时目标跟踪[J].清华大学学报(自然科学版),2008,48(7):1104-1107. 被引量:39
  • 7Zhao Z X, Yu S Q, Wu X Y, et al. A multi-target tracking algo rithm using texture for real-time surveillance[C]//Proc, of the International Conference on Robotics and Biomimetics, 2009: 2150-2155.
  • 8Zhao Q, Tao H. A motion observable representation using color correlogram and its applications to tracking[J]. Computer Vision and Image Understanding, 2009,113(2) : 273 - 290.
  • 9Lee S H, Kang M G. Motion tracking based on area and level set weighted centroid shifting[J]. IET Computer Vision, 2010, 4 (2) :73 - 84.
  • 10刘晴,唐林波,赵保军,孙景乐.改进的mean shift目标跟踪算法[J].系统工程与电子技术,2013,35(6):1318-1323. 被引量:12

二级参考文献75

共引文献162

同被引文献53

引证文献5

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部