期刊文献+

火灾预警的SVR应用研究 被引量:4

Research on Application of SVR in Fire Alarm
下载PDF
导出
摘要 针对传统火灾探测系统对火灾特征信号响应灵敏度均匀性差,而基于神经网络的智能处理方法又存在泛化能力差和过学习等问题。建立了一种基于支持向量回归机(SVR)模式识别方法与传感器阵列相结合火灾预警模型。SVR方法根据统计学习理论中结构风险最小化原则,将气体传感器、烟雾传感器和温度传感器组成的传感器阵列数据进行融合,将复杂的非线性问题转化成了高维平面内的线性问题,克服了传统方法和神经网络方法的缺陷。实验结果表明,使用支持向量回归机的火灾预警模型的预测精度优于神经网络方法,提高了火灾预警系统的可靠性和准确度。 The traditional fire detection system has poor uniformity of response sensitivity of the fire characteristic signals.And the intelligent method based on neural networks has problems of poor generalization ability and over learning.A new fire alarm model based on support vector regression(SVR) and sensor array is proposed to solve the above problems.SVR uses the structural risk minimization of statistical learning theory to fuse data of sensor array composed by gas sensors,smoke sensors and temperature sensors,the complex nonlinear problem is transformed into linear problem of high dimensional plane.The drawbacks of traditional methods and neural networks mediod are overcome.The experimental results show that prediction accuracy of SVR fire alarm model is better than neural network.The reliability and accuracy of the fire alarm system are increased.
出处 《测控技术》 CSCD 2015年第8期19-22,共4页 Measurement & Control Technology
基金 国家自然科学基金重大国际合作研究项目(60910005)
关键词 支持向量回归机 火灾预警 模式识别 传感器阵列 support vector regression fire alarm pattern recognition sensor array
  • 相关文献

参考文献12

  • 1程晓舫,王瑞芳,张维农,王亚雄.火灾探测的原理和方法(上)[J].中国安全科学学报,1999,9(1):24-29. 被引量:40
  • 2程晓舫,王瑞芳,张维农,王亚雄.火灾探测的原理和方法(下)[J].中国安全科学学报,1999,9(2):1-5. 被引量:16
  • 3Ho C C, Chen M C. Nighttime fire smoke detection system based on machine vision [ J ]. International Journal of Preci- sion Engineering and Manufacturing, 2012,13 ( 8 ) : 1369 - 1376.
  • 4Jones W W. Implementing high reliability fire detection in the residential setting [ J ]. Fire Teehnology, 2012,48 ( 2 ) : 233 - 254.
  • 5Liu Z G, Hadjisophocleous G, Ding G F, et al. Study of a vid- eo image fire detection system for protection of large industri- al applications and atria[ J ]. Fire Technology,2012,48 ( 2 ) :459 - 492.
  • 6Gunay O, Tasdemir K, Ugur Tureyin B, et al. Fire detection in video using LMS based active learning[ J]. Fire Technolo- gy,2010,46(3) :551 - 577.
  • 7程彩霞,孙富春,周心权.基于径向基函数神经网络的矿井智能火灾探测方法[J].煤炭科学技术,2011,39(2):65-68. 被引量:3
  • 8梁晟.基于SVM和聚类的Internet流识别方法[J].计算机工程与设计,2010,31(7):1566-1569. 被引量:1
  • 9Chua K S. Efficient computations for large least square sup- port vector machine classifiers [ J ]. Pattern Recognition Let- ters ,2003,24 ( 1 - 3 ) :75 - 80.
  • 10Cao L J, Keerthi S S, Ong C J, et al. Parallel sequential minimal optimization for the training of support vector ma- chines[ J]. IEEE Transactions on Neural Networks,2006, 17(4) : 1039 - 1049.

二级参考文献22

  • 1程晓舫,王瑞芳.日本的智能火灾安全系统[J].消防技术与产品信息,1996,9(3):36-43. 被引量:7
  • 2吴起,蒋军成.基于BP神经网络技术的实验数据分析处理[J].中国安全科学学报,2006,16(1):39-43. 被引量:12
  • 3陆伟华.人工神经网络BP算法在评价网站中的应用[J].科技情报开发与经济,2007,17(6):170-172. 被引量:6
  • 4程晓舫.CCD影像中高温目标的甄别.第二届“安全与环境工程”中日双边学术会议论文集[M].,.39-45.
  • 5裴秋红.复合探测器[J].消防产品研究,1997,(2):11-12.
  • 6Kim M S,Won Y J,Hong J W K.Application level traffic monitoring and analysis on IP networks[J].ETRI Journal,2005,27(1):14-17.
  • 7Moore A W,Papagian naki K.Toward the accurate identification of network applications[C].6th International Workshop on Passive and Active Network Measurement.Heidelberg:Springer Verlag,2005:15-16.
  • 8Matthew R,Subhabrata S,Oliver S,et al.Class of service mapping for QoS:a statistical signature based approach to IP traffic clas-sification[C].Proceedings of the ACM SIGCOMM Internet Measurement Conference.New York:Association for Computing Machinery,2007:123-124.
  • 9McGregor A,Hall M,Lorier P,et al.Flow clustering using machine learning techniques[C].5th International Workshop on Passive and Active Network Measurement.Heidelberg:Springer Verlag,2005:233-234.
  • 10Augustin S,Salamatian K,Nina T,et al.Flow classification by histograms or how to go on safari in the Internet[C].Joint International Conference on Measurement and Modeling of Computer Systems.New York:Association for Computing Machinery,2005:512.

共引文献49

同被引文献50

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部