期刊文献+

基于支持向量机的柴油机磨损模式识别方法 被引量:5

Wear Mode Recognition Method of Diesel Engines Based on Support Vector Machine
下载PDF
导出
摘要 针对现有柴油机磨损模式判别方法中存在的不足,将支持向量机算法应用到柴油机磨损模式的识别中,建立了基于支持向量机的柴油机磨损模式判断模型,并对部分实验柴油机油液样本进行了评估,并与广义贴近算法、模糊聚类算法和专家评判结果进行了比较,证明了支持向量机能够准确、有效地识别柴油机磨损模式。 In view of the existing shortcomings on the course of wear mode identifying method on diesel en- gines, the support vector machine (SVM) algorithm was applied to the wear mode identifying. The recog- nition mode for the wear of diesel engine which was based on the SVM algorithm was established, and sev- eral oil samples of experimental diesel engines were estimated. The result was compared with results of generalized closeness degree algorithm, fuzzy clustering algorithm and expert assessment, and we proved that the wear mode of diesel engine can be effectively and accurately recognized by the SVM method.
出处 《四川兵工学报》 CAS 2015年第8期96-99,共4页 Journal of Sichuan Ordnance
关键词 支持向量机 磨损模式 柴油机 油液分析 SVM wear mode diesel engines oil sample estimation
  • 相关文献

参考文献11

二级参考文献25

  • 1刘兢生,刘佐民.高温对发动机气门磨损特性影响的试验研究[J].内燃机工程,1994,15(4):67-73. 被引量:13
  • 2符锡仁.陶瓷发动机研究开发近况简介[J].国外内燃机,1995,27(2):3-8. 被引量:7
  • 3王慧芳.船舶机械检验制度的进展.中国造船工程学会修船技术学术委员会船舶维修理论学组第九次学术会议论文集[M].,1999..
  • 4YAN Weiwu, SHAO Huihe. Application of support vector machine nonlinear classifier to fault diagnosis [C]//Proceedings of the 4th World Congress on Intelligent Control and Automation, June 10 - 14, 2002, Shanghai, China. 2002(4): 2697-2700.
  • 5LI Ye, CA1 Yunze, YIN Rupo, et al. Fault diagnosis based on support vector machine ensemble [ C ]//Proceedings of the 4th International Conference on Machine Learning and Cybernetics, August 18-21, 2005, Guangzhou, China. 2005:3309-3314.
  • 6VAPNIK V N. An overview of statistical learning theory [J]. IEEE Transactions on Neural Networks, 1999, 10(5) : 88 -99.
  • 7WANG Xizhao, LU Mingzhu, HUO Jianbing. Fault diagnosis of power transformer based on large margin learning classifier [C]// Proceedings of the 5^th International Conference on Machine Learning and Cybernetics, August 13 -16, 2006, Dalian, China. 2006 : 2886 - 2891.
  • 8HSU Chih Wei, LIN Chih Jen. A comparison of methods for multiclass support vector machines [ J]. IEEE Transactions on Neural Networks, 2002, 13(2) : 415 -425.
  • 9WANG Xiaodan, SHI Zhaohui, WU Chongming, et al. An improved algorithm tbr decision-tree-based SVM [ C ]//Proceedings of the 6^th World Congress on Intelligent Control and Automation, June 21 -23, 2006,Dalian, China. 2006:4234 -4238.
  • 10FUMITAKE Takahashi, SHIGEO Abe. Decision-tree-based multiclass support vector machines [ C ]//Proceedings of the 9^th International Conference on Neural Information Processing. 2002:1418 - 1422.

共引文献67

同被引文献64

引证文献5

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部