期刊文献+

利用车载移动测量数据的建筑物立面建模方法 被引量:41

A Survey on Facade Modeling Using LiDAR Point Clouds and Image Sequences Collected by Mobile Mapping Systems
原文传递
导出
摘要 随着三维空间数据获取能力的提高和人们对三维空间信息需求的提升,城市地区的三维重建成为研究及应用的热点。一方面,建筑物立面包含丰富和直观的细节信息,是建筑物三维建模不可或缺的组成部分;另一方面,车载移动测量是街景级分辨率上高效采集建筑物立面数据的有效途径。但是,目前车载移动测量系统的数据处理能力难以与其采集能力相匹配,因此,在建筑物三维建模方面仍有巨大潜力和持续的研究价值。本文综合国内外近期研究成果,分析了车载移动测量数据的特点,探讨了利用三维点云和影像序列数据进行建筑物立面重建及增强的方法,最后总结了现有方法的主要不足及存在的挑战。 With the development of sensors and rising demand for three-dimensional spatial information, 3D city reconstruction has become a hot topic in research and applications. A facade, as part of the building model, contains detailed and intuitive information, which could be effectively collected by mobile mapping systems with high resolution on street view. However, the current processing capa- bility for mobile mapping data is not suitable for the consistently growing and massive amount of data acquired by mobile mapping systems. Therefore, there is still huge potential and sustainable value in the research of 3D building modeling using mobile mapping data. This paper reviews the existing related research activities both at home and abroad. Firstly, the paper analyzes the features of mobile mapping data. Secondly, the paper discusses the main algorithms in the workflow of building facade reconstruction and enhancement using 3D point clouds and image sequence. Finally, we point out the limitations of the existing methods and the challenges for future research.
出处 《武汉大学学报(信息科学版)》 CSCD 北大核心 2015年第9期1137-1143,共7页 Geomatics and Information Science of Wuhan University
基金 国家自然科学基金资助项目(41271431)~~
关键词 车载移动测量 建筑物立面建模 三维点云 影像序列 mobile mapping systems facade modeling 3D point clouds image sequences
  • 相关文献

参考文献46

  • 1Forsyth D A, Ponce J. Computer Vision.- A Mod- ern Approach [M]. Upper Saddle River: Pearson Education, Inc. , 2012.
  • 2Szeliski R. Computer Vision: Algorithms and Ap- plications [M]. New York: Springer-Verlag, 2010.
  • 3Pollefeys M, Nistr D, Frahm J M, et al. Detailed Real-Time Urban 8D Reconstruction from Video [J-]. International Journal of Computer Vision, 2008, 78(2); 143-167.
  • 4Xiao J. Image-Based Building Modeling [D]. Hong Kong.. The Hong Kong University of Science and Technology, 2009.
  • 5Torii A, Havlena M, Pajdla T. From Google Street View to 3D City Models [C]. The 12th Internation- al Conference of the Computer Vision Workshops, Kyoto, 2009.
  • 6Mieusik B, Kosecka J. Piecewise Planar City 3D Modeling from Street View Panoramic Sequences [C]. IEEE Computer Society Conference on Com- puter Vision and Pattern Recognition, Miami, FL, USA, 2009.
  • 7Frueh C, Jain S, Zakhor A. Data Processing Algo- rithms for Generating Textured 3D Building Facade Meshes from Laser Scans and Camera Images [J]. International Journal of Computer Vision, 2005, 61(2) .. 159-184.
  • 8Pu S. Knowledge Based Building Facade Recon- struction from Laser Point Clouds and Images [D]. Enschede, the Netherlands: University of Twente, 2010.
  • 9Wang R. Towards Urban 3D Modeling Using Mo- bile LiDAR and Images [D]. Montreal, Canada: McGill University, 2011.
  • 10Lin H, Gao J, Zhou Y, et al. Semantic Decomposi- tion and Reconstruction of Residential Scenes from LiDAR Data [J]. ACM Transactions on Graphics, 2013, 32(4): 1-10.

二级参考文献86

共引文献441

同被引文献308

引证文献41

二级引证文献342

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部