期刊文献+

基于高阶物面近似的自适应间断有限元法欧拉方程数值模拟 被引量:5

Adaptive discontinuous Galerkin method to solve Euler equations based on high-order approximative boundary
下载PDF
导出
摘要 将高阶间断有限元与网格自适应相结合,于非结构网格上求解二维Euler方程。将数值解多项式的高阶项贡献用人工粘性项系数的形式进行量化,网格自适应过程中以人工粘性项系数作为网格自适应的指示器。在系数达到设定的上限阀值的区域进行网格加密,在系数达到设定的下限阀值的区域将迭代过程中加密过的网格稀疏以减少网格量。所有自适应均在高阶曲线逼近真实物面的基础上进行,以保证数值结果的精度。典型数值算例结果与实验结果进行了对比,表明采用该自适应间断有限元法可以保证以尽可能小的计算量得到高精度结果。 A high-order discontinuous method (DGM) is integrated with adaptive method to solve Euler equations on unstructured mesh. Contribution of the polynomial's highest-order terms is quantified in the form of artificial viscous coefficient. The coefficient is regarded as the indicator of h-adaptivity. Elements where the coefficients are greater than the upper limit are re- fined. Those where the coefficients are less than the lower limit are coarsened if they have been refined. A high-order geometric approximation of curved boundaries is adopted to ensure the con- vergence. Numerical results of test cases are consistent with corresponding experimental ones. High accurate numerical results can be obtained with the h-adaptive method at low expense.
出处 《空气动力学学报》 CSCD 北大核心 2015年第4期446-453,共8页 Acta Aerodynamica Sinica
基金 国家自然科学基金(11272152) 航空科学基金(20101552018) 江苏高校优势学科建设工程资助项目
关键词 高阶间断有限元 自适应方法 EULER方程 人工粘性 物面高阶近似 high-order DGM adaptive method Euler equations artificial viscosity high-order boundary approximation
  • 相关文献

参考文献19

  • 1Reed W H, Hill T R. Triangular mesh methods for the neutron transport[R]. Los Alamos Scientific Laboratory Report LA- UR-73-479, 1973.
  • 2Bassi F, Rehay S, A high-order accurate discontinuous finite el- ement method for the numerical solution of the compressible Navier-Stokes equations[J]. Journal of Computational Physics, 1997, 131(2): 267-279.
  • 3Bassi F, Rebay S. High-order accurate discontinuous finite ele- ment solution of the 2D Eulcr equations[J]. Journal of Compu- tational Physics, 1997, 138(2): 251-285.
  • 4Cockhurn B, Shu C. The Runge-Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems[J]. Journal of Computational Physics, 1998, 141(2): 199-224.
  • 5Cockburn B, Shu C. The local discontinuous Galerkin method for time-dependent convection-diffusion systems [J ]. SIAM Journal on Numerical Analysis, 1998, 35(6) : 2440-2463.
  • 6Nguyen N C, Persson P O, Peraire J. RANS solutions using high order discontinuous Galerkin methods [R]. AIAA 2007- 0914.
  • 7吕宏强,伍贻兆,周春华,田书玲.稀疏非结构网格上的亚声速流高精度数值模拟[J].航空学报,2009,30(2):200-204. 被引量:10
  • 8吕宏强,朱国祥,宋江勇,伍贻兆.线化欧拉方程的高阶间断有限元数值解法研究[J].力学学报,2011,43(3):621-624. 被引量:12
  • 9Lu H. High-order discontinuous Galerkin solution of low-Re viscous flows[J]. Modern Physics Letters B, 2009, 23 (03) : 309-312.
  • 10张来平,刘伟,贺立新,邓小刚.基于静动态混合重构的DG/FV混合格式[J].力学学报,2010,42(6):1013-1022. 被引量:5

二级参考文献94

  • 1贺立新,张来平,张涵信.间断Galerkin有限元和有限体积混合计算方法研究[J].力学学报,2007,39(1):15-22. 被引量:28
  • 2贺立新,张来平,张涵信.任意单元间断Galerkin有限元计算方法研究[J].空气动力学学报,2007,25(2):157-162. 被引量:15
  • 3Lu H Q. High-order finite element solution of elastohydronamic lubrication problems[D]. Leeds,UK: University of Leeds, 2006.
  • 4Cockburn B, Kamiadakis G E, Shu C W. Discontinuous Galerkin methods: theory, computation and applications [M]. Berlin: Springer, 1999.
  • 5Bassi F, Rebay S. High-order accurate discontinuous finite element solution of the 2D Euler equations[J]. Journal of Computational Physics, 1997,138(2) :251-285.
  • 6Lu H Q, Berzins M, Goodyer C E, et al. High order discontinuous Galerkin method for elastohydrodynamic lubrication line contact problems[J]. Communications in Numerical Methods in Engineering, 2005,21(11):643-650.
  • 7Luo H, Baum J D, Lohner R. A P-multigrid discontinuous Galerkin method for the Euler equations on unstructure grids[J]. Journal of Computational Physics, 2006,211(2): 767-783.
  • 8Hartmann R. Adaptive finite element methods for the compressible Euler equations[D]. Heidelberg, Germany: University of Heidelberg, 2002.
  • 9Reed W H,Hill T R.Triangular mesh methods for the neutron transport equation[R].Los Alamos Scientific Laboratory Report LA-UR-73-479,1973.
  • 10Bassi F,Rebay S.A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations[J].J Comput Phys,1997,131:267-279.

共引文献49

同被引文献40

引证文献5

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部