期刊文献+

具有两种失效状态的δ-冲击模型的最优维修策略 被引量:4

Optimal maintenance policy for the δ-shock model which has two types of failures
原文传递
导出
摘要 针对在运行过程中不断受到冲击且有两种失效状态的系统,提出了一种新的δ-冲击模型.系统在工作过程中不断受到冲击,冲击的到达服从泊松过程,系统发生故障可能有两种原因,一种是由于系统的自然寿命,另一种是冲击造成的.系统逐次故障后的维修时间形成随机递增的几何过程,且逐次维修后的工作时间形成随机递减的几何过程,以系统进行更换前的故障次数N为策略,利用更新过程和几何过程理论求出了系统经长期运行单位时间内期望费用的表达式,并给出了具体例子和数值分析. In this paper, the δ-shock model which has two types of failures is studied, the system suffers shocks in working time, the shocks arrive according to a Poisson process. The failures of the system on the one hand is because of the lifetime of the system, on the other hand is because of the shocks. The successive survival times of the system form a stochastically decreasing geometric process and the consecutive repair times after system failures form a stochastically increasing geometric process, we consider replacement policies N, based on the failure number of the system before replacement. By using the renewal process theory and geometric process theory, the explicit expression of the long-run expected cost per unit time is derived. Finally, a numerical example is given.
出处 《系统工程理论与实践》 EI CSSCI CSCD 北大核心 2015年第8期2113-2119,共7页 Systems Engineering-Theory & Practice
基金 国家自然科学基金(71071133 11301458) 河北省自然科学基金(G2012203136)
关键词 冲击 几何过程 泊松过程 更新过程 期望费用 shock geometric process Poisson process renewal process expected cost
  • 相关文献

参考文献15

  • 1Esary J D, Marshall A W, Proschan F. Shock models and wear process[J]. Journal of Applied Probability, 1973, 1: 627-649.
  • 2Barlow R E, Proschan F. Statistical theory of reliability and life testing[M]. New York: Holt, Rinehart and Winston, Inc, 1975.
  • 3Lam Y, Zhang Y L. A geometric-process maintenance model for a deteriorating system under a random envi- ronment[J]. IEEE Transactions on Reliability, 2003, 52(1): 83- 90.
  • 4成国庆,李玲,唐应辉.离散时间冲击下的k/n(G)系统的可靠性分析[J].数学的实践与认识,2009,39(24):135-140. 被引量:1
  • 5李玲,成国庆.考虑不完全检测的冲击模型最优维修策略[J].运筹学学报,2013,17(4):33-42. 被引量:3
  • 6Chen Y L. A bivariate optimal imperfect preventive maintenance policy for a used system with two-type shocks[J]. Computers & Industrial Engineering, 2012, 63: 1227-1234.
  • 7Wang G J, Zhang Y L. δ-shock model and its optimal replacement policy[J]. Journal of Southeast University 2001, 31: 121-124.
  • 8Tang Y Y, Lam Y. A δ-shock maintenance model for a deteriorating system[J]. Journal of Operational Research 2006, 168: 541-556.
  • 9魏艳华,王丙参.δ-冲击模型及随机检测[J].北京联合大学学报,2011,25(1):89-92. 被引量:5
  • 10Yu M M, Tang Y H, Wu W Q, et al. Optimal order-replacement policy for a phase-type geometric process model with extreme shocks[J]. Applied Mathematical Modelling, 2014, 38:4323 -4332.

二级参考文献49

  • 1李泽慧,白建明,孔新兵.冲击模型的研究进展[J].质量与可靠性,2005(3):31-36. 被引量:5
  • 2吴少敏,张元林.修理情形不同的两部件串联系统的可靠性分析[J].应用数学,1995,8(1):123-125. 被引量:18
  • 3Ross S M. Stochastic Processes[M]. Wiley, New York, 1982.
  • 4Shanthilumar J G, Sumita U. General shock models associated with correlated renewal sequences[J]. J of Appl Prob, 1983, 20:600- 614.
  • 5Wang G J, Zhang Y L. A shock model with two type failures and optimal replacement poliey[J]. International Journal of Systems Science, 2005, 36(4): 209-214.
  • 6CAO Jin-hua, WU yan-hong. Reliability analysis of a multi-state system with a replaceable repair facility[J]. Acta Math Appl Sinica, 1988, 4(2): 113-121.
  • 7Ross, S M. Stochastic Processes[M]. New York: John Wiley &: Sons, 1983.
  • 8Widder, D V. The Laplace Transform[M]. Princeton University Press, Princeton, 1946.
  • 9Barlow R E, Proschan F. Statistical Theory of Reliability and Life Testing[M]. New York: Holt, Reinehart and Winston, 1975.
  • 10Lam Y. Geometric processes and replacement problem[J]. Acta Mathematics Appicatel Sinica, 1988, 4(4): 366-377.

共引文献34

同被引文献34

引证文献4

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部