期刊文献+

纳米α-MnO_2的微乳液法制备及其在锌离子电池中的性能 被引量:4

Electrochemical performance in zinc ion battery of nanosizedα-MnO_2 synthesized by a new microemulsion method
原文传递
导出
摘要 针对高性能锌离子电池的制备,在AOT/异辛烷反相微乳液体系中,以KMnO4为氧化剂,琥珀酸二(2-乙基己酯)磺酸钠(AOT)同时作为表面活性剂和还原剂制备了纳米α-MnO2。借助X射线衍射(XRD)、透射电子显微镜(TEM)和恒流充放电测试等手段研究了反应温度对粉体晶型和结构形貌及其在模拟锌离子电池中的放电容量和循环性能的影响。结果表明:所制备的粉体为高纯度弱结晶性纳米α-MnO2,且随着反应温度的提高,粉体由无定形态逐渐向三维刺球状颗粒转变,但粉体团聚加重。反应温度为40℃时制备的样品在30mg/cm2高活性物质载量、100mA/g和1000mA/g放电速率下电极比容量分别为212.6mAh/g和98mAh/g,相对于普通低温固相反应法制备的MnO2,放电比容量、高倍率放电性能和循环性能均明显提高。 Aiming at the preparation of high performance zinc ion batteries,nanosized α-MnO2 had been synthesized by using AOT/isooctane reverse micelles system,in which reactant KMnO4 was reduced by surfactant sodium bis(2-ethyl- hexyl) sulfosuccinate(AOT). X ray diffraction(XRD),transmission electron mieroscope(TEM),and galvanostatic charge- discharge tests were carried out to investigate the effect of reaction temperature on the morphology and structure of the crystalline powder, discharge capacity and cycle performance of the simulated zinc ion batteries. The results indicated that the as-prepared powders were high purity and poor crystallinity nanosized α-MnO2, with the increase of reaction tempera ture,the amorphous powder products transformed into spherical particles and agglomeration increased greatly. The sample which was obtained with 40℃ had an excellent specific capacitance of 212.6mAh/g and 98mAh/g at the current density of 100mA/g and 1000mA/g and high loading of 30mg/cm2, compared with the α-MnO2 prepared by solid state reaction, the discharge capacity,high rate discharge performance and cycle performance were significantly improved.
出处 《化工新型材料》 CAS CSCD 北大核心 2015年第8期78-80,共3页 New Chemical Materials
基金 江苏高校优势学科建设工程项目 广西科技成果转化与推广计划项目(1298009-15)
关键词 自反应微乳液法 纳米α-MnO2 二次锌离子电池 电化学性能 self-reacting mieroemulsion nanosized α-MnO2 secondary zinc ion battery electrochemical performance
  • 相关文献

参考文献12

  • 1Xu Chengjun, Li Baohua, Du Hongda, et al. Energetic zinc ion chemistry: the rechargeable zinc ion battery[J]. Angewandte Chemie, 2012,124(4) : 957 -959.
  • 2Lee Jonghyuk,Ju Jeh Beck,Cho Won I I,et al. Todorokite-type MnO2 as a zinc-ion intercalating material[J]. Electrochimica Ac- ta,2013,112(2) 138-143.
  • 3Wang Faxing, Xiao Shiying, Hou Yuyang, et al. Electrode mate- rials for aqueous asymmetric supercapacitors [J 1. RSC Ad- vances,2013,32(3) 13059-13084.
  • 4Yan Jing,Wang Jing,Liu Hao,et al. Rechargeable hybrid aque- ous batteries[J]. Journal of Power Sources, 2012,216 ( 3 ) .- 222- 226.
  • 5高鹏程,王玉婷,李文翠.不同含量钾离子支撑α-MnO_2的合成及其电化学性能[J].电源技术,2011,35(4):412-415. 被引量:2
  • 6张莹,刘开宇,张伟,王洪恩.二氧化锰超级电容器的电极电化学性质[J].化学学报,2008,66(8):909-913. 被引量:27
  • 7张密林,杨晨,陈野,薛云.纳米MnO_2超级电容器电解液性能研究[J].电源技术,2004,28(10):626-629. 被引量:8
  • 8Reddy R N,Reddy R G. Synthesis and electrochemical charac- terization of amorphous MnO2 electrochemical capacitor elec- trode material[J]. Journal of Power Sources, 2004, 132 (102) : 315.
  • 9Kitchens C L, McLeod M C, Roberts C B. Solvent effects on the growth and steric stabilization of copper metallic nanoparticles in AOT reverse micelle systems[J]. The Journal of Physical Chemistry B,2003,107(41)) :11331-11338.
  • 10韩晓辉,张莹,刘开宇,唐有根.二氧化锰电容材料的制备及性能表征[J].电池工业,2008,13(1):30-34. 被引量:4

二级参考文献67

共引文献44

同被引文献31

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部