期刊文献+

不确定声场分析的二阶区间摄动有限元法 被引量:3

Second-order interval perturbation finite element method for the analysis of the acoustic filed with uncertain parameters
原文传递
导出
摘要 针对一阶区间摄动有限元法在声场参数不确定程度增大时误差过大的缺陷,在二阶Taylor展开的基础上推导了声学二阶区间摄动有限元法,并将其应用于区间不确定声场的声压响应分析。该方法先对声学区间有限元方程的声压响应向量进行二阶Taylor展开,获取声压响应的二阶近似响应向量;再根据二次函数极值定理获得声压响应向量的上下界。二维管道声场与轿车声腔模型的数值分析算例表明,与一阶区间摄动有限元法相比,二阶区间摄动有限元法有效提高了计算精度。因此二阶区间摄动有限元适合不确定度更大的区间不确定声场声压响应分析,具有良好的工程应用前景。 Abstract Aiming at the problem that the accuracy of the first-order interval perturbation method is not satisfactory when it is used for the response analysis of the acoustic filed with large uncertain levels, the acoustical second-order interval perturbation finite element method is proposed based on the second-order Taylor series expansion and the acoustic FEM method. In the acoustical second-order perturbation finite element method, the non-deterministic sound pressure vector of the acoustic filed with interval parameters is expanded to the second order Taylor series. The upper and lower bounds of the sound pressure response are evaluated latter in the inner feasible domain of the interval parameters based on the extreme value theorem. Numerical results on a 2D acoustic tube and a 2D acoustic cavity of a car with interval parameters show that the second-order interval perturbation finite element method achieves higher accuracy compared with the first-order interval perturbation finite element method. Hence, the second-order interval perturbation finite element method can be well applied in analyzing the acoustic filed with larger uncertain levels, and has a wide application foreground.
出处 《声学学报》 EI CSCD 北大核心 2015年第5期703-709,共7页 Acta Acustica
基金 湖南大学汽车车身先进设计制造国家重点实验室自主课题(51375002)资助
关键词 区间摄动 有限元法 声场分析 二阶 TAYLOR展开 参数不确定 有限元方程 极值定理 Acoustic fields Numerical methods Perturbation techniques Taylor series Uncertainty analysis
  • 相关文献

参考文献14

  • 1李义丰,李国峰,王云.卷积完全匹配层在两维声波有限元计算中的应用[J].声学学报,2010,35(6):601-607. 被引量:15
  • 2夏百战,于德介,姚凌云.二维多流体域耦合声场的光滑有限元解法[J].声学学报,2012,37(6):601-609. 被引量:9
  • 3Stefanou G. The stochastic finite element method: past, present and future. Computer Methods in Applied Me- chanics and Engineering, 2009; 198(9-12): 1031-1051.
  • 4李杰,陈建兵.随机动力系统中的概率密度演化方程及其研究进展[J].力学进展,2010,40(2):170-188. 被引量:68
  • 5Edgecombe S, Linse P. Monte Carlo simulation of two in- terpenetrating polymer networks: structure, swelling, and mechanical properties. Polymer, 2008; 49(7): 1981-1992.
  • 6邱志平,马丽红,王晓军.不确定非线性结构动力响应的区间分析方法[J].力学学报,2006,38(5):645-651. 被引量:24
  • 7Moens D, Hanss M. Non-probabilistic finite element anal- ysis for parametric uncertainty treatment in applied me- chanics: Recent advances. Finite Elements in Analysis and Design, 2011; 47(1): 4-16.
  • 8Qiu Zhiping, Chen Suhuan, Elishakoff I. Bounds of eigenvalues for structures with an interval description of uncertain-but-non-random parameters. Chaos, Solitons & Fractals, 1996; 7(3): 425-434.
  • 9Qiu Zhiping, Elishakoff I. Antioptimization of structures with large uncertain-but-non-random parameters via inter- val analysis. Computer Methods in Applied Mechanics and Engineering, 1998; 152(3): 361-372.
  • 10Xia Baizhan, Yu Dejie. Modified sub-interval perturba- tion finite element method for 2D acoustic field prediction with large uncertain-but-bounded parameters. Journal of Sound and Vibration, 2012; 331(16): 3777-3781.

二级参考文献122

共引文献111

同被引文献11

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部