期刊文献+

基于压缩感知和非对称Turbo码的联合信源信道编码 被引量:1

JOINT SOURCE AND CHANNEL CODING BASED ON COMPRESSED SENSING AND ASYMMETRIC TURBO CODES
下载PDF
导出
摘要 针对无线环境信道系统恶劣且不稳定的特点,提出一种压缩感知和非对称Turbo码的联合信源信道编码方案。该方案将具有很好压缩性能的压缩感知技术与具有强纠错能力的非对称Turbo码结合实现了自适应图像压缩传输的联合信源信道编码。可以根据基于二维压缩感知的信道估计方法来估计无线信道环境,动态地调整压缩感知的参数以及非对称Turbo码的编码策略来提高图像的传输效率和重建质量。实验仿真结果表明,根据不同的无线信道环境采用不同的压缩感知的采用测量数以及非对称Turbo码的类型,能够提高图像的传输效率,使图像恢复质量与图像传输速率达到最优的平衡。 For the characteristic of channel system in radio environment being harsh and unstable,this paper proposed a jointing source and channel coding scheme which is based on compressed sensing and asymmetric Turbo codes. The scheme combines the compressed sensing technology which has good compression performance with the asymmetric Turbo code which has strong error correction capability,thus realises the joint source and channel coding with adaptive compressed image transmission. According to 2D compression sensing-based channel estimation method,this scheme estimates radio channel environment and dynamically adjusts the parameters of compressed sensing and the encoding strategies of asymmetric Turbo codes to improve image's transmission efficiency and the reconstruction quality. Experimental simulation results show that to use different measurement number of compressed sensing and types of asymmetric Turbo code according to different radio channel environment,the transmission efficiency of image can be improved,and the quality restoration and transmission rate of image can achieve the optimal balance.
出处 《计算机应用与软件》 CSCD 2015年第8期110-113,共4页 Computer Applications and Software
基金 国家自然科学基金项目(61072075) 湖北省自然科学基金项目(2013CFB448) 中央高校基本科研业务费专项资金重点项目(CZZ13001)
关键词 压缩感知 正交匹配追踪 非对称Turbo码 联合信源信道编码 Compressed sensing Orthogonal matching tracking Asymmetric Turbo codes Joint source and channel code
  • 相关文献

参考文献21

  • 1Donho D L. Compressed Sensing [ J ]. IEEE Transactions on Informa-tion Theory, 2006,52(4) :1289 - 1306.
  • 2Candes E,Romberg J, Tao T. Robust uncertainty principles : exact sig-nal reconstruction from highly incomplete frequency information [ J].IEEE Transactions on Information Theory, 2006,52(2) :489 ~509.
  • 3Berrou C, Glavieux A. Near Shannon limit error correct coding and de-coding :Turbo coding and decoding: Tiyrbo codes [ C] . IEEE ICC93 ,1993,10:1064-1070.
  • 4Oscar Y Takeshita. A Note on Asymmetric Turbo-Codes [ J]. IEEEJournal, 1999:69-71.
  • 5李佳,王强,沈毅,李波.压缩感知中测量矩阵与重建算法的协同构造[J].电子学报,2013,41(1):29-34. 被引量:19
  • 6付宁,乔立岩,曹离.面向压缩感知的块稀疏度自适应迭代算法[J].电子学报,2011,39(A03):75-79. 被引量:15
  • 7李志林,陈后金,李居朋,姚畅,杨娜.一种有效的压缩感知图像重建算法[J].电子学报,2011,39(12):2796-2800. 被引量:13
  • 8Donoho D L,Tsaig Y. Extensions of compressed sensing [ J ]. IEEETransaction on Signal Processing, 2006, 86(3) : 533 -548.
  • 9焦李成,杨淑媛,刘芳,侯彪.压缩感知回顾与展望[J].电子学报,2011,39(7):1651-1662. 被引量:317
  • 10Gilbert A C, Guha S, Indyk P. Near-optimal sparse Fourier represen-tations via sampling[ C ] //Proceedings of the Annual ACM Symposiumon Theory of Computing. Montreal, Canada, Association for Compu-ting Machinery, 2002 : 152 - 161.

二级参考文献181

  • 1马丕明,袁东风,杨秀梅.非规则LDPC码的不等错误保护性能研究[J].通信学报,2005,26(11):132-136. 被引量:7
  • 2张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 3E Candes, J Romberg, Terence Tao. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information [ J ]. IEEE Trans on Information Theory, 2006,52(2) :489 - 509.
  • 4D L Donoho. Compressed sensing[J]. IEEE Trans on Information Theory.2006,52(4) : 1289 - 1306.
  • 5E Candes, Terence Tao. Decoding by linear programming[ J ]. IEEE Trans on Information Theory, 2005, 51 ( 12): 4203 - 4215.
  • 6J A Tropp, A C Gilbert. Signal recovery from random measurements via orthogonal matching pursuit [ J ]. IEEE Trans on Information Theory, 2007,53 (12) : 4655 - 4666.
  • 7W Dai, O Milenkovic. Subspace pursuit for compressive sensing signal reconstruction[ J]. IEEE. Trans on Information Theory, 2009,55(5) :2230 - 2249.
  • 8T T Do,L Gan,N Nguyen, T D Tran. Sparsity adaptive matching pursuit algorithm for practical compressed sensing [ A ]. In Proceedings of the 42th Asilomar Conference on Signals, Systems, and Computers [ C ]. Pacific Grove, California, 2008. 581 - 587.
  • 9R G Baraniuk, V Cevher, M F Duarte,C Hegde. Model-based compressive sensing [ J ]. IEEE, Trans on Information Theory, 2010,56(4) :1982 - 2001.
  • 10Y C Eldar,M Mishali. Robust recovery of signals from a structured union of subspaces[ J]. IEEE Trans on Information Theory,2009,55 (11) :5302 - 5316.

共引文献461

同被引文献4

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部