期刊文献+

生物硫铁生成菌的选育及处理重金属效果研究 被引量:3

Isolation of a biological iron sulfide composites-producing strain and its application in treatment of heavy metal wastewater
原文传递
导出
摘要 [目的]分离高产生物硫铁生成菌,初步鉴定并研究其生成限制因素及处理重金属效果。[方法]利用分离驯化出的1株高产生物硫铁复合材料(生物硫铁)的硫酸盐还原菌(srb1),考察硫酸亚铁浓度、有机物浓度以及搅拌速度对其生成生物硫铁的影响。[结果]有机物和Fe SO4·7H2O的浓度是制约生物硫铁生成的关键因素,生物硫铁处理重金属Cr6+、Pb2+、Cd2+、Cu2+效果显著,去除率达90%以上,尤其是处理重金属Cu2+废水最佳,去除率达99%以上。[结论]筛选到生物硫铁生成菌srb1,初步鉴定为梭状芽胞杆菌属Clostridium mesophilum。确定了生物硫铁生成的最佳培养条件为乳酸钠15 m L/L+酵母膏8 g/L+Fe SO4·7H2O 15 g/L。 [ Objective ] Isolate a strain that high -yield biological iron sulfide composites preliminarily identify it and study its generation limiting factor and the treatment effect on heavy metal wastewater. [ Methods] A strain of sulfate -reducing bacteria with high yield of biological iron sulfide composites (BISC) was separated and acclimated. The effect of concentration of ferrous sulfate and organics and stirring speed on the generation of biological iron sulfide composites was studied. [ Results ] The concentration of organic and FeSO4+ 7H2O was the limiting factor in BISC generation. BISC had remarkable treatment effect on Cr6 + , Pb2+ , Cd2 + , Cu2 + heavy metal wastewater, removal efficiency reached 90%, especially Cn2 ~ wastewater, the removal effi- ciency reached 99%. [ Conclusion] A strain srbl that high -yield BISC was isolated and identified as Clostridium mesophilum. The optimal culture conditions were determined as sodium lactate 15 mL/L,yeast extract 8 g/L and FeSO4·7H2O 15 g/L.
出处 《生物技术》 CAS CSCD 北大核心 2015年第4期391-396,共6页 Biotechnology
基金 国家自然科学基金项目("生物硫铁复合材料处理重金属污染事故的应用基础研究" No.51378013) 四川省教育厅一般项目("污酸中汞的赋存状态及脱除机理研究" No.13ZB0021)资助
关键词 硫酸盐还原菌 生物硫铁 重金属废水 处理效果 sulfate reducing bacteria, biological iron sulfide composites ( BISC), heavy metal wastewater, treatment effect
  • 相关文献

参考文献19

  • 1Dias blC, Monteiro C, Moutinho - Pereira J, et al. Cadmium toxicity affects photosynthesis and plant growth at different levels [ J ]. Aeta Physiologiae Plantarum ,2013,35 (4) : 1281 - 1289.
  • 2Kamashwaran SR, Crawford DL. Anaerobic biodegradation of penta- chlorophenol in mixtures containing cadmium by two physiologically distinct microbial enrichment cultures [ J]. Journal of Industrial Mi- crobiology & Biotechnology ,2001,27 : 11 - 17.
  • 3Singh RP, Agrawal M. Effects of sewage sludge amendment on heavy metal accumulation and consequent responses of beta vulgaris plants [ J ]. Chemosphere ,2007,67:2229 - 2240.
  • 4Kieu Hoa TQ, Muller Elizabeth, Horn Harald. Heavy metal removal in anaerobic semi - continuous stirred tank reactors by a consortium of sulfate - reducing bacteria [ J ]. Water Research, 2011,45 ( 13 ) : 3863 - 3870.
  • 5罗丽卉,谢翼飞,李旭东.生物硫铁复合材料处理含铜废水及机理研究[J].中国环境科学,2012,32(2):249-253. 被引量:11
  • 6Xie YF, Li XD, Li FD. Study on application of biological iron sul- fide composites in treating vanadium - extraction wastewater contai- ning chromium( Wl ) and chromium reclamation[ J]. Journal of En- vironmemal Biology ,2013,34 (4) :301 - 305.
  • 7Nevatalo LM, Makinen AE, Kaksonen AH, et al. Biological hydro- gen sulfide production in an ethanol - lactate fed fluidized - bed bioreactor[ J ]. Bioresource Technology,2010,101 ( 1 ) : 276 - 284.
  • 8Keller KL,Rapp -Giles BJ,Semkiw ES,et al. New model for elec- tron flow for sulfate reduction in Desulfovibrio alasker:is G20 [ J ]. Applied Environmental Microbiology ,2014,80 (3) : 855 - 868.
  • 9Oluwaseun OO, Robert PH, Susan TLH. Kinetic analysis of biologi- cal sulphate reduction using lactate as carbon source and electron donor: Effect of sulphate concentration [ J ]. Chemical Engineering Science,2010,65:4771 -4781.
  • 10Bertolino SM, Rodrigues ICB, Guerra - Sa R, et al. Implications of volatile fatty acid profile on the metabolic pathway during continu- ous sulfate reduction [ J ]. Journal of Environmental Management, 2012,103:15-23.

二级参考文献23

  • 1潘响亮,王建龙,张道勇.硫酸盐还原菌混合菌群胞外聚合物对Cu^(2+)的吸附和机理[J].水处理技术,2005,31(9):25-28. 被引量:28
  • 2陈福星,周立祥.生物催化合成的施氏矿物对废水中Cr(VI)的吸附[J].中国环境科学,2006,26(1):11-15. 被引量:32
  • 3van Houten B H G W, Kees R, Tzeneva V A, et al. Occurrence of methanogenesis during start-up of a full-scale synthesis gas-fed reactor treating sulfate and metal-rich wastewater [J]. WatRes, 2006, 40: 553-560.
  • 4Tabak H H, Govind R. Advances in biotreatment of acid mine drainage and biorecovery of metals-2: Membrane bioreaetor system for sulfate reduction [J].Biodegradation, 2003, 14: 437-452.
  • 5American Public Health Association, American Water Works Association (APHA) and Water Pollution Control Federation. Method 4500-SO42-E, in Standard Methods for the Examination of Water and Wastewater (20th ed. ) [S]. Washington D C, USA, 1998.
  • 6Weijma J, Gubbels F, Hulshoff Pol LW, et al. Competition for Hz between sulfate reducers, methanogens and homoacetogens in a gas-lift reactor [J]. War Sci & Tech, 2002, 45(10): 75-80.
  • 7He Zhen, Angenent Largus T. Application of bacterial biocathodes in microbial fuel cells [J]. Electroanalysis, 2006, 18(19- 20): 2009- 2015.
  • 8Postgate J R. The Sulphate-Reducing Bacteria [M]. Cambridge, UK: Cambridge University Press, 1979.
  • 9Watson J H P, Ellwoocl D C, Soper A K, et al. Nanosized songly-magnetic bacterially-produced iron sulphide materials [J]. J. Magn. Magn. Mater, 1999,203(1-3):69-7.
  • 10Young-Wook C. Metal removal efticiencies of substrates for treating acid mine drainage of the Dalsung mine [J-]. South Korea J. of Eochem. Exp., 1998,64(1-3):147-152.

共引文献14

同被引文献37

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部