期刊文献+

α-丙氨酸限域在螺旋手性SWCNT(12,6)与水复合环境下的手性转变机理 被引量:6

The Chiral Transition Mechanism ofα-Alanine Confined in the Chiral Helicity SWCNT(12,6)/Water Complex Environment
下载PDF
导出
摘要 用量子化学ONIOM(B3LYP/6-311++G(3df,3pd):UFF)//ONIOM(B3LYP/6-31+G(d,p):UFF)方法,研究了α-Ala限域在SWCNT(12,6)与水复合环境的手性转变.分子结构计算表明:反应物S型α-Ala在SWCNT(12,6)和水的复合环境与单体相比,氢转移需要断的O—H键长都略长,氢转移的H与其要转到的目标原子O的距离均短很多.中间体在SWCNT(12,6)和水的复合环境下与单体相比,涉及到氢转移的C—H键略长;涉及到氢转移的H和O的距离都短.反应通道研究发现:α-Ala在SWCNT(12,6)与水复合环境下,手性转变反应有4条路径,每条路径上的氢转移都能以1个或2个水分子为媒介实现.势能面计算发现:各反应路径上的最高能垒均来自氢从手性碳向羰基氧转移的过渡态.最高能垒的最小值在氨基先异构接着羧基氢转移的路径,并以2H2O为氢转移媒介,能垒为100.3kJ·mol-1.比α-Ala在SWCNT(9,9)与水复合环境手性转变过程最高能垒的最低值154.3kJ·mol-1明显降低.结果表明:对于α-Ala的手性转变反应,螺手性SWCNT是比扶椅型SWCNT更好的纳米反应器. Using the quantum chemistry ONIOM(B3LYP/6-311++G(3df,3pd):UFF)∥ONIOM(B3LYP/6-31+ G(d,p):UFF)method,the chiral transition mechanism ofα-alanine confined in the chiral helicity SWCNT(12,6)/water complex environment is studied.The research on the molecular structure shows that,compared s-typeα-Ala in the SWCNT(12,6)/water complex environment with monomer molecules,the bond lengths between oxygen and hydrogen involving hydrogen transfer are slightly increased.However,the distance between oxygen and hydrogen is significantly shorten under the same condition.Compared the intermediate in the SWCNT(12,6)/water complex environment with monomer molecules,the bond lengths between carbon and hydrogen involving hydrogen transfer are slightly increased and the distance between oxygen and hydrogen is significantly shorten.The research on the reaction channels ofα-Ala chiral shift shows that,there are four reaction paths in SWCNT(12,6).Whats more,the process of the hydrogen transfer are all realized by the way which makes one or two water molecules as bridge.The research on the potential energy surfaces of chiral reaction shows that,the maximum energy barriers of every path are always coming from transition state where hydrogen transfers from chiral carbon to carbonyl.The minimum of maximum energy barriers is 100.3kJ·mol-1 in this process Amino heterogeneous first then hydrogen transfers inside the carboxyl which using two water molecules as bridge.Corresponding to chiral transition ofα-Ala in the SWCNT(9,9)/water complex environment,the minimum of maximum energy barriers is 154.3 kJ· mol-1 which obviously reduced.The results show that chiral helicity SWCNT is better nanoreactor than armchair SWCNT forα-Ala.
出处 《复旦学报(自然科学版)》 CAS CSCD 北大核心 2015年第3期261-276,共16页 Journal of Fudan University:Natural Science
基金 吉林省科技发展计划资助项目(20130101131JC) 国家自然科学基金资助项目(11004076)
关键词 碳纳米管 Α-丙氨酸 手性转变 ONIOM方法 密度泛函 过渡态 carbon nanotubes a-alanine chiral transition ONIOM (our own n-layered integrated molecule orbitand molecule.mechanics) method density functional theory transition state
  • 相关文献

参考文献19

二级参考文献73

  • 1Wang Wenqing,Gong Yan,Li Chen.Biochirality and parity violating energy difference[J].Chinese Science Bulletin,2002,47(7):603-608. 被引量:1
  • 2王文清,刘轶男,龚䶮.手性分子中的宇称破缺:D-和L-丙氨酸的变温中子结构研究(英文)[J].物理化学学报,2004,20(11):1345-1351. 被引量:43
  • 3Salam, A. Phys. Lett. B, 1992, 288:153
  • 4Salam, A. J. Mol. Evol., 1991, 33:105
  • 5Salam, A. Chemical evolution: Origin of life. Hampton Virginia of USA: Deepak Publishing, 1993:101
  • 6Wang, W. Q.; Yi, F.; Ni, Y. M.; Zhao, Z. X.; Jin, X.L.; Tang, Y. Q. J. Biol. Phys., 2000, 26:51
  • 7Wang, W. Q.; Gong, Y.; Li, C. Chinese Science Bulletin,2002, 47(7): 603
  • 8Barthes, M.; Bordallo, H. N.; Denoyer, F.; Lorenzo, J.E.;Zaccaro, J.; Robert, A.; Zontone, F. Eur. Phys. J. B,2004, 37:375
  • 9Wang, W. Q.; Min, W.; Zhu, C. F.; Yi, F. Phys. Chem.Chem. Phys., 2003, 5: 4000
  • 10Wang, W. Q.; Min, W.; Bai, F.; Sun, L.; Yi, F.; Wang,Z. M.; Yan, C. H.; Ni, Y. M.; Zhao, Z. X. Tetrahedron:Asymmetry, 2002, 13:2427

共引文献109

同被引文献91

  • 1王文清,刘轶男,龚䶮.手性分子中的宇称破缺:D-和L-丙氨酸的变温中子结构研究(英文)[J].物理化学学报,2004,20(11):1345-1351. 被引量:43
  • 2黄善定,方海飞.手性药物拆分的研究进展[J].医药导报,2005,24(8):710-712. 被引量:12
  • 3祝忠群.谷氨酸、天门冬氨酸与心肌保护[J].心血管病学进展,1997,18(1):47-50. 被引量:26
  • 4吴洪,赵艳艳,喻应霞,姜忠义.分子印迹壳聚糖膜分离手性苯丙氨酸[J].功能高分子学报,2007,20(3):262-266. 被引量:26
  • 5徐光宪,黎乐民,王德民.量子化学(中册)[M].北京:科学技术出版社,1985:962—986.
  • 6SOMERO G N. Protons osmolytes, and fitness of internalm ilieu for protein function [J]. American Journal of Physiology, 1986,251(2) : 197-213.
  • 7KENJI H, AKIKO M, KIYOSHI Z. D-Amino acids in mammals and their diagnostic value[J]. Journal of Chromatography B, 2002,781(1-2):73-91.
  • 8TOHRU Y, NOBUYOSHI E, Amino acid racemases: Functions and mechanisms [J]. J Bioscience and Bioengineering, 2003,96(2) : 103-109.
  • 9NORIKO F. D-Amino acids in living higher organisms [J]. Origins of Life and Evolution of the Biosphere, 2002,32(2) : 103-127.
  • 10ANIELLO A D, FIORE M M D, FISHER G H, et al. Ingrosso, occurrence of D-aspartic acid and N- methyl-D-aspartic acid in rat neuroendocrine tissues and their role in the modulation of luteinizing hormone and growth hormone release[J]. FASEB J, 2000,14(5): 699-714.

引证文献6

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部