期刊文献+

色氨酸W129在匍枝根霉内切葡聚糖酶EGⅡ降解纤维素过程中的作用

The role of tryptophan W129 of endoglucanaseⅡ from Rhizopus stolonifer in degradation of cellulose
下载PDF
导出
摘要 通过对匍枝根霉(Rhizopus stolonifer)内切葡聚糖酶EGII进行结构功能分析,发现其活性中心入口处的色氨酸W129在水解纤维素的过程中起着关键作用。对该位点进行定点突变(W129A),并研究了它对EGII和催化区(CD)的影响。经原核表达及纯化,获得目的蛋白EGII-W129A和CD-W129A。酶学特性研究结果显示,重组蛋白的比酶活、kcat和kcat/Km均低于EGII和CD,比酶活分别下降了23.8%和35.7%,同时Km值均有所提高。W129A导致酶与底物的亲和力和催化效率下降,使酶活力降低的原因主要是其减弱了活性中心入口处纤维素链的"载入"效率,即Trp129在EGII水解纤维素过程中起到加载纤维素链的重要作用。 Structural and functional analysis of Rhizopus stolonifer endoglucanase( EGII) showed that W129 at active-site tunnel entrance played a key role in hydrolysis of cellulose. Site-directed mutagenesis( W129A) had been applied to study its impact on EGII and catalytic domain( CD). The proteins( EGII-W129 A and CD-W129A) were obtained by prokaryotic expression and purification. The results of studies on enzymatic properties indicated that the specific activity of recombinant protein were lower than those of the EGII and CD( decrease of 23. 8% and 35. 7%),meanwhile,the Kmvalues were improved. W129 A reduced the efficiency of the cellulose chain loading on the entrance of active-site tunnel,leading to the decrease of enzyme activity and affinity between substrate and enzyme. It was Trp129 that played an important role of loading cellulose chains and starting hydrolysis in the degradation of cellulose.
出处 《食品与发酵工业》 CAS CSCD 北大核心 2015年第4期17-21,共5页 Food and Fermentation Industries
基金 国家自然科学基金项目(31270135)
关键词 匍枝根霉 内切葡聚糖酶 色氨酸 结构与功能 定点突变 Rhizopus stolonifer endoglucanase tryptophan functional analysis site-directed mutagenesis
  • 相关文献

参考文献16

  • 1Kerna M,Mc Geehanb J E,Streeterb S D,et al.Structural characterization of a unique marine animal family 7 cellobiohydrolase suggests a mechanism of cellulase salt tolerance[J].Proc Natl Acad Sci USA,2013,110(25):10 189-10 194.
  • 2Brunecky R,Alahuhta M,Xu Q,et al.Revealing nature’s cellulase diversity:The digestion mechanism of Caldicellulosiruptor bescii Cel A[J].Science,2013,342(6 165):1 513-1 516.
  • 3汤斌,张莹莹,杨亚平.匍枝根霉TP-02内切葡聚糖酶基因eg2的克隆表达及功能分析[J].食品与发酵工业,2013,39(7):13-17. 被引量:8
  • 4李祥林,汤斌,李松.高质量匍枝根霉cDNA文库的构建及鉴定[J].安徽工程大学学报,2014,29(2):35-37. 被引量:3
  • 5Knott B C,Momeni M H,Crowley M F,et al.The mechanism of cellulose hydrolysis by a two-step,retaining cellobiohydrolase elucidated by structural and transition path sampling studies[J].J Am Chem Soc,2014,136(1):321-329.
  • 6方诩,秦玉琪,李雪芝,王禄山,汪天虹,朱明田,曲音波.纤维素酶与木质纤维素生物降解转化的研究进展[J].生物工程学报,2010,26(7):864-869. 被引量:79
  • 7阎伯旭,曲音波,高培基,孙迎庆.色氨酸残基在内切葡聚糖酶分子中的作用[J].中国生物化学与分子生物学报,1998,14(2):181-185. 被引量:22
  • 8Igarashi K,Koivula A,Wada M,et al.High speed atomic force microscopy visualizes processive movement of Trichoderma reesei cellobiohydrolase I on crystalline cellulose[J].J Biol Chem,2009,284(52):36 186-36 190.
  • 9Nakamura A,Tsukada T,Igarashi K,et al.Tryptophan residue at active-site tunnel entrance of Trichoderma reesei cellobiohydrolase Cel7A is important to initiate degradation of crystalline cellulose[J].J Biol Chem,2013,288(19):13503-13 510.
  • 10Miller G L.Use of dinitrosalicylic acid reagent for determination of reducing sugar[J].Analytical Chemistry,1959,31(3):426-428.

二级参考文献19

  • 1Gowen CM, Fong SS. Exploring biodiversity for cellulosic biofuel production[J]. Chemistry & Biodiversity, 2010, 7 (5): 1 086-1 097.
  • 2Takashima S, Ohno M, Hidaka M, et al. Correlation be- tween cellulose binding and activity of cellulose-binding do- main mutants of Humicola grisea cellobiohydrolase I [ J ]. FEBS Letters, 2007, 581(30): 5 891 -5 896.
  • 3Nakazawa H, Okada K, Onodera T, et al. Directed evolu- tion of endoglucanase III (Cell2A) from Trichoderma reesei [ J]. Applied Microbiology Biotechnology, 2009, 83 (4) : 649 - 657.
  • 4Samanta S, Basu A, Halder UC, et al. Characterization of Trichoderma reesei endoglucanase II expressed heterolo- gously in Pichia pastoris for better bionfinishing and bios- toning[J]. J Microbiol, 2012, 50(3): 518 -525.
  • 5Moriya T, Murashima K, Nakane A, et al. Molecular clo- ning of endo-beta-D-1,4-glucanase genes, rcel, rce2, and rce3, from Rhizopus oryzae [ J]. J Bacteriol, 2003, 185 (5): 1 749-1 756.
  • 6Hirvonen M, Papageorgiou AC. Crystal structure of a fami- ly 45 endoglucanase from Melanocarpus albomyces: mecha- nistic implications based on the free and cellobiose-bound forms[J]. Journal of Molecular Biology, 2003, 29 (3) : 403 - 410.
  • 7Carrard G, Koivula A, Soderlund H, et al. Cellulose- binding domains promote hydrolysis of different sites on crystalline cellulose[ J]. Proc Natl Aead Sci USA, 2000, 97(19) : 10 342 -10 347.
  • 8Warner CD, Camci-Unal G, Pohl NLB, et al. Substratebinding by the catalytic domain and carbohydrate binding module of Ruminococcus flavefaciens FD-1 xyloglucanase/ endoglucanase[ J ]. Industrial & Engineering Chemistry Research, 2013(2) : 30 -36.
  • 9Kraulis PJ, Clore GM, Nilges M, et al. Determination of the three-dimensional solution structure of the C-terminal domain of cellobiohydrolase I from Trichoderma reesi. A study using nuclear magnetic resonance and hybrid dis- tance geometry-dynamical simulated annealing [ J ]. Bio- chemistry, 1989, 28(18) : 7 241 -7 257.
  • 10Valjakka J, Rouvinen J. Structure of 20K endoglueanase from Melanocarpus albomyces at 1.8 resolution [ J]. Bio- logical Crystallography, 2003, 59:765 -768.

共引文献107

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部