期刊文献+

改进的支持向量机算法在人脸识别上的应用 被引量:10

Application of the improved SVM algorithm on face recognition
下载PDF
导出
摘要 支持向量机算法作为一种新的机器学习方法,在处理小样本分类问题上具有明显优势,但核函数和参数的选取直接影响支持向量机算法的性能.针对该问题,文中通过组合全局核函数和局部核函数的混合核函数方法,建立了基于粒子群算法的混合核支持向量机算法,并将其用于ORL人脸数据库的人脸识别测试.结果表明,该改进算法较标准的支持向量机算法具有更高的识别率. As a new machine learning method,support vector machine algorithm has many obvious advantages in solving the problem of small samples.However,it is important to select an optimal kernel function and parameters in order to enhance the performance of support vector machine algorithm.In this paper,the support vector machine algorithm based on hybrid kernel and PSO is proposed by the mixed kernel function method combined with global kernel function and local kernel function,and after the classification test on the ORL face database,the results show that the improved algorithm is superior to standard SVM on recognition accuracy.
作者 谌璐 贺兴时
出处 《纺织高校基础科学学报》 CAS 2015年第1期108-115,共8页 Basic Sciences Journal of Textile Universities
基金 陕西省软科学基金资助项目(2012KRM58) 陕西省教育厅自然科学基金资助项目(12JK0744) 宝鸡文理学院校级重点项目(2K14049)
关键词 支持向量机 混合核函数 粒子群优化算法 人脸识别 support vector machine hybrid kernel function particle swarm optimized algorithm face recognition
  • 相关文献

参考文献4

二级参考文献33

  • 1谭满春,冯荦斌,徐建闽.基于ARIMA与人工神经网络组合模型的交通流预测[J].中国公路学报,2007,20(4):118-121. 被引量:68
  • 2Vapnik V N. The Nature of Statistical Learning Theory [ M ]. New York : Springer-Verlag, 1995.
  • 3Mercer J. Functions of positive and negative type and their connection with the theory of integral equations [ J ]. Trans. Roy Soc London A, 1990,209:415 - 416.
  • 4Smola A J. Learning with Kernel [ D ]. Berlin :Ph D Thesis Berlin, 1998.
  • 5Smits G F, Jordaan E M. Improved SVM Regression u- sing Mixtures of Kernels [ C ]//Proceedings of the 2002 International Joint Conference on Neural Networks. Ha- waii : IEEE, 2002 : 2785 - 2790.
  • 6SAUNDERS C,STITSON M,WESTON J, et al. Support vector machine reference manual[ R ]// Technical Re- port CSD - TR - 98 - 03. London : Royal Holloway Uni- versity, 1998.
  • 7Blake C, Merz C, Uci repository of machine learning da- tabases[ EB/OL]. [ 1998 - 05 - 24 ]. URL http:// www. ics. uci. edu/- mlearrr/MLRepository, html.
  • 8CRISTIANINI N, SHAWE-TAYLOR J. An Introduction to Support Vector Machines and Other Kernel-based Learning Methods [ M ]. Cambridge : The Syndicate of the Press of the University of Cambridge,2000.
  • 9李国正 王蒙 曾华军译.支持向量机导论[M].北京:电子工业出版社,2004-03..
  • 10Vladimir N Vapnik.An Overview of Statistical Learning Theory[J]. IEEE Transactions on Neural Networks, 1999; 10(5) :988-999.

共引文献256

同被引文献86

引证文献10

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部