期刊文献+

基于改进量子粒子群优化的多阈值图像分割算法 被引量:5

Multi-Threshold Image Segmentation Algorithm Based on Improved Quantum-Behaved Particle Swarm Optimization
下载PDF
导出
摘要 为提升工程应用中图像分割的质量,在变异量子粒子群算法的基础上进行改进,并结合最大类间方差法提出了一种基于改进量子粒子群优化(QPSO)的多阈值图像分割算法.该算法结合贝叶斯定理与粒子搜索过程中的历史信息构建了一个记忆向量,然后根据记忆向量对每个粒子的行为进行预测,并以此自动设置各粒子的变异概率,使算法在保持一定局部开发能力的同时提升全局搜索能力.在Berkeley数据集上的仿真实验结果表明,与两种基于粒子群的图像分割算法相比,文中算法能获得更为稳定且清晰的图像分割结果. In order to improve the quality of image segmentation in engineering applications,an improved quantumbehaved particle swarm optimization( QPSO) algorithm is proposed on the basis of mutated QPSO,which is then combined with the maximum between-cluster variance method to present a multi-threshold image segmentation algorithm. The algorithm is characterized by a memory vector constructed from memory information in the search procedure of particles using Bayesian theorem. The memory vector is used to predict the future behaviors of particles and to assign the mutation probability of each particle automatically. In this way,the global search ability is enhanced and the convergence ability is preserved for the algorithm. Experimental results on Berkeley datasets show that the proposed algorithm is superior to two existing PSO-based methods because it helps obtain more stable and clearer image segmentation results.
出处 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2015年第5期126-131,138,共7页 Journal of South China University of Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(61372140)~~
关键词 量子粒子群优化 记忆信息挖掘 多阈值 图像分割 quantum-behaved particle swarm optimization memory information exploration multi-threshold image segmentation
  • 相关文献

参考文献14

  • 1高浩,须文波,孙俊.量子粒子群算法在图像分割中的应用[J].计算机工程与应用,2007,43(33):24-25. 被引量:6
  • 2冯斌,王璋,孙俊.基于量子粒子群算法的Ostu图像阈值分割[J].计算机工程与设计,2008,29(13):3429-3431. 被引量:14
  • 3Gao H, Xu W B, Sun J, et al. Multilevel thresholding for image segmentation through an improved quantum-be- haved particle swarm algorithm [ J ]. IEEE Transactions on Instrumentation and Measurement, 2010,59 ( 4 ) : 934- 946.
  • 4Coelho L S. A quantum particle swarm optimizer with cha- otic mutation operator [ J ]. Chaos, Solitons & Fractals, 2008,37 (5) : 1409-1418.
  • 5石锦风,冯斌,孙俊.用带变异因子的QPSO算法解决Job-Shop调度问题[J].计算机工程与应用,2008,44(8):49-52. 被引量:11
  • 6林星,冯斌,孙俊.基于边界变异的量子粒子群优化算法[J].计算机工程,2008,34(12):187-188. 被引量:12
  • 7Yang Z L, Min H Q, Jiang Y Z. Multilevel thresholding for image segmentation through quantum-behaved particle swarm optimisation with memory approach [ J ]. Journal of Computational Information Systems,2013,9(2) :703-711.
  • 8Clerc M. The swarm and the queen : towards a determinis- tic and adaptive particle swarm optimization [ C ]//Pro- ceedings of 1999 IEEE Congress on Evolutionary Compu- tation. Washington D C : IEEE, 1999 : 1951-1957.
  • 9Angeline P I. Evolutionary optimization versus particle swarm optimization: philosophy and performance diffe- rences [ M ]//Porto V W, Saravanan N, Waagen D, et al. Evolutionary Programming VII. Berlin: Springer, 1998 : 601-610.
  • 10Liu J, Sun J, Xu W B. Quantum-behaved particle swarm optimization with adaptive mutation operator [ M]//Jiao Lieheng, Wang Lipo, Gao Xin-bo, et al. Advances in Na- tural Computation. Berlin: Springer, 2006 : 959- 967.

二级参考文献29

  • 1徐小慧,张安.基于粒子群优化算法的最佳熵阈值图像分割[J].计算机工程与应用,2006,42(10):8-11. 被引量:31
  • 2冯斌,须文波.基于粒子群算法的量子谐振子模型[J].计算机工程,2006,32(20):18-21. 被引量:11
  • 3Shi Y,Eberhart R C.A modified particle swarm optimizer[C]//Proceedings of the IEEE International Conference on Evolutionary Computation,Piscataway, 1998.NJ:IEEE Press, 1998:69-73.
  • 4Clerc M.The swarm and queen:towards a deterministic and adaptive panicle swarm optimization[C]//Proceedings of CEC 1999,Piscataway.NJ:IEEE Press, 1999: 1951-1957.
  • 5Sun J,Feng B,Xu W B.Particle swarm optimization with particles having quantum behavior[C]//Proceedings of 2004 Congress on Evolutionary Computation, 2004 : 325-331.
  • 6Yao X,Liu Y.Fast evolutionary strategies[C]//Proc 6th Conf Evolutionary Programming, 1997:151-161.
  • 7Sun J,Xu W B,Feng B.A global search strategy of quantum-behaved particle swarm optimization[C]//Proceedings of IEEE conference on Cybernetics and Intelligent Systems,2004:111-116.
  • 8Pal N R, Pal S K. A review on image segmentation techniques Pattern Recognition [ R ] 1993, 26 ( 9 ), 1277-1294.
  • 9Otsu N. A Threshold Selection Method From Gray-Level Histogram [J] . IEEE Trans. On SMC. 1979, 9.
  • 10Kennedy J, Eberhart R C. Particle swarm optimization.Proceedings of the IEEE International Conference on Neural Networks [Z] . IEEE service center, Piscataway, NJ, 1995,Ⅳ: 1942-1948.

共引文献46

同被引文献54

引证文献5

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部