期刊文献+

AlGaN Channel High Electron Mobility Transistors with an AlxGa1-xN/GaN Composite Buffer Layer

AlGaN Channel High Electron Mobility Transistors with an AlxGa1-xN/GaN Composite Buffer Layer
原文传递
导出
摘要 We report an AlGaN channel high electron mobility transistor (HEMT) on a sapphire substrate with a 1000-nm A1xGa1-xN (x = 0-0.18)/GaN composite buffer layer, With a significant improvement of crystal quality, the device features a high product orris. #n. The AIGaN channel HEMTs presented show improved performance with respect to the conventional AIGaN channel HEMTs, including the on-resistance reduced from 31.2 to 8.1 Ω.mm, saturation drain current at 2 V gate bias promoted from 218 to 540 mA/mm, peak transconductance at 10 V drain bias promoted from 100 to a state-of-the-art value of 174 mS/ram, and reverse gate leakage current reduced from 1.85 × 10-3 to 2.15 × 10-5 mA/mm at VOD = -20 V. We report an AlGaN channel high electron mobility transistor (HEMT) on a sapphire substrate with a 1000-nm A1xGa1-xN (x = 0-0.18)/GaN composite buffer layer, With a significant improvement of crystal quality, the device features a high product orris. #n. The AIGaN channel HEMTs presented show improved performance with respect to the conventional AIGaN channel HEMTs, including the on-resistance reduced from 31.2 to 8.1 Ω.mm, saturation drain current at 2 V gate bias promoted from 218 to 540 mA/mm, peak transconductance at 10 V drain bias promoted from 100 to a state-of-the-art value of 174 mS/ram, and reverse gate leakage current reduced from 1.85 × 10-3 to 2.15 × 10-5 mA/mm at VOD = -20 V.
出处 《Chinese Physics Letters》 SCIE CAS CSCD 2015年第7期156-159,共4页 中国物理快报(英文版)
基金 Supported by the National Science and Technology Major Project of China under Grant No 2013ZX02308-002 National Natural Science Foundation of China under Grant Nos 11435010 and 61474086
  • 相关文献

参考文献25

  • 1Khan M A, Bhattarai A, Kuznia J N and Olson D T 1993 Appl. Phys. Lett. 63 1214.
  • 2Wu Y F, Saxler A, Moore M, Smith 1 P, Sheppard S, Chavarkar P M, Wisleder T, Mishra U K and Parikh P 2004 IEEE Electron Device Lett. 25 117.
  • 3Zhang N Q, Keller S, Parish G, Heikman S, DenBaars S P and Mishra U K 2000 IEEE Electron Device Lett. 21 421.
  • 4Dora Y, Chakraborty A, McCarthy L, Keller S, DenBaars S P and Mishra U K 2006 IEEE Electron Device Lett. 27 713.
  • 5Chen C Q, Zhang J P, Adivarahan V, Koudymov A, Fatima H, Simin G, Yang J and Khan M A 2003 Appl. Phys. Lett. 82 4593.
  • 6Meng F, Zhang J, Zhou H, Ma J, Xue J, Dang L, Zhang L, Lu M, Ai S, Li X and Hao Y 2012 J. Appl. Phys. 112 023707.
  • 7Bahat T E, Hilt O, Brunner F, Sidorov V, Wurfl J and Trankle (3 2010 IEEE Trans. Electron. Devices 57" 1208.
  • 8Nanjo T, Takeuchi M, Suita M, Abe Y, Oishi T, Tokuda Y and Aoyagi Y 2007 IEEE Int. Electron. Devices Meeting (Washingon DC 10--12 December) p 397.
  • 9Raman A, Dmsgupta S, Rajan S, Speck 3 S and Mishra U K 2008 Jpn. J. Appl. Phys. 47 3359.
  • 10Hmshimoto S, Akita K, Tanabe T, Nakahata H, Takeda K and Amano H 2010 Phys. Status Solidi C 7 1938.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部