期刊文献+

Reconstructing Spatial Distribution of Historical Cropland in China′s Traditional Cultivated Region: Methods and Case Study 被引量:4

Reconstructing Spatial Distribution of Historical Cropland in China′s Traditional Cultivated Region: Methods and Case Study
下载PDF
导出
摘要 As an important part of land use/cover change(LUCC), historical LUCC in long time series attracts much more attention from scholars. Currently, based on the view of combining the overall control of cropland area and ′top-down′ decision-making behaviors, here are two global historical land-use datasets, generally referred as the Sustainability and the Global Environment datasets(SAGE datasets) and History Database of the Global Environment datasets(HYDE datasets). However, at the regional level, these global datasets have coarse resolutions and inevitable errors. Considering various factors that influenced cropland distribution, including cropland connectivity and the limitation of natural and human factors, this study developed a reconstruction model of historical cropland based on constrained Cellular Automaton(CA) of ′bottom-up′. Then, an available labor force index is used as a proxy for the amount of cropland to inspect and calibrate these spatial patterns. Applied the reconstruction model to Shandong Province, we reconstructed its spatial distribution of cropland during 8 periods. The reconstructed results show that: 1) it is properly suitable for constrained CA to simulate and reconstruct the spatial distribution of cropland in traditional cultivated region of China; 2) compared with ′SAGE datasets′ and ′HYDE datasets′, this study have formed higher-resolution Boolean spatial distribution datasets of historical cropland with a more definitive concept of spatial pattern in terms of fractional format. As an important part of land use/cover change(LUCC), historical LUCC in long time series attracts much more attention from scholars. Currently, based on the view of combining the overall control of cropland area and ′top-down′ decision-making behaviors, here are two global historical land-use datasets, generally referred as the Sustainability and the Global Environment datasets(SAGE datasets) and History Database of the Global Environment datasets(HYDE datasets). However, at the regional level, these global datasets have coarse resolutions and inevitable errors. Considering various factors that influenced cropland distribution, including cropland connectivity and the limitation of natural and human factors, this study developed a reconstruction model of historical cropland based on constrained Cellular Automaton(CA) of ′bottom-up′. Then, an available labor force index is used as a proxy for the amount of cropland to inspect and calibrate these spatial patterns. Applied the reconstruction model to Shandong Province, we reconstructed its spatial distribution of cropland during 8 periods. The reconstructed results show that: 1) it is properly suitable for constrained CA to simulate and reconstruct the spatial distribution of cropland in traditional cultivated region of China; 2) compared with ′SAGE datasets′ and ′HYDE datasets′, this study have formed higher-resolution Boolean spatial distribution datasets of historical cropland with a more definitive concept of spatial pattern in terms of fractional format.
出处 《Chinese Geographical Science》 SCIE CSCD 2015年第5期629-643,共15页 中国地理科学(英文版)
基金 Under the auspices of National Basic Research Program of China(No.2011CB952001) National Natural Science Foundation of China(No.41340016,412013860)
关键词 traditional cultivated region historical cropland reconstruction constrained Cellular Automaton (CA) Shandong Province 历史数据库 耕地面积 空间布局 土地利用/覆盖变化 传统 重构 SAGE 重建模型
  • 相关文献

参考文献21

二级参考文献284

共引文献1069

同被引文献102

引证文献4

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部