期刊文献+

基于聚类和划分的SAT分治判定 被引量:1

Clustering and Partition Based Divide and Conquer for SAT Solving
下载PDF
导出
摘要 提出了一种将布尔公式划分为子句组来进行布尔可满足性判定的方法.CNF(conjunctive normal form)公式是可满足的当且仅当划分产生的每个子句组都是可满足的,因此,通过判定子句组的可满足性来判定原公式的可满足性,相当于用分治法将复杂问题分解为多个子问题来求解.这种分治判定方法一方面降低了原公式的可满足性判定复杂度;另一方面,由于子句组的判定可以并行,因而判定速度能够得到进一步的提高.对于不能直接产生布尔子句组划分的情形,提出了一种利用聚类技术将CNF公式聚类成多个簇,然后消去簇间的公共变量来产生子句组划分的方法. A partition based Boolean satisfiability solving method is proposed. By partitioning a CNF(conjunctive normal form) formula into several clause groups, Boolean satisfiability problem can be divided into small sub-problems, hence reducing the complexity of the original problem. Meanwhile, the satisfiability of different clause group can be solved in parallel, thus further speeding up the decision procedure. For the formula that clause group partition cannot be generated directly, a clustering algorithm is given to cluster clauses into clusters so that clause group partition can be generated by eliminating common variables among clusters.
出处 《软件学报》 EI CSCD 北大核心 2015年第9期2155-2166,共12页 Journal of Software
基金 国家自然科学基金(61133001 61322202 61420106004)
关键词 合取范式 布尔可满足性 划分 聚类 conjunctive normal form Boolean satisfiability partition clustering
  • 相关文献

参考文献26

  • 1Cook S. The complexity of theorem proving procedures. In: Proc. of the ACM SIGACT Symp. on the Theory of Computing. 1971. [doi: 10.1145/800157.805047].
  • 2Tseitin. G. On the complexity of derivation in propositional calculus. In: Proc. of the Structures in Constructive Mathematics and Mathematical Logic, Part II: Seminars in Mathematics (translated from Russian). Steklov Mathematical Institute, 1968. 115-125. [doi: 10.1007/978-3-642-81955-1_28].
  • 3Impagliazzo R, Paturi R, Zane F. Which problems have strongly exponential complexity? Journal of Computer and System Sciences, 2001,63(4):512-530. [doi: 10.1006/jcss.2001.1774].
  • 4Calabro C, Impagliazzo R, Paturi R. A duality between clause width and clause density for sat. In: Proc. of the 21 st Annual IEEE Conf. on Computational Complexity. Washington: IEEE Computer Society, 2006. 252-260. [doi: 10.1109/CCC.2006.6].
  • 5Impagliazzo R, Paturi R. On the complexity of k-SAT. Joumal of Computer and System Sciences, 2001,62(2):367-375. [doi: 10.1006/jcss.2000.1727].
  • 6E~n N, Biere A. Effective preprocessing in SAT through variable and clause elimination. In: Proc. of the 8th Int'l Conf. on Theory and Applications of Satisfiability Testing (SAT 2005). LNCS 3569, 2005.61-75. [doi: 10.1007/11499107_5].
  • 7Jarvisalo M, Biere A, Heule M. Simulating circuit-level simplifications on CNF. Journal of Automated Reasoning, 2012,49(4): 583-619. [doi: 10.1007/s10817-011-9239-9].
  • 8Biere A, Heule M, Maaren H, Walsh T, eds. Handbook of Satisfiability. lOS Press, 2009. [doi: 10.3233/978-1-58603-929-5-3].
  • 9Davis M, Logemann G, Loveland D. A machine program for theorem proving. Communications of the ACM, 1962,5(7):394-397. [doi: 10.1145/368273.368557].
  • 10Marques-Silva J, Sakallah K. GRASP: A search algorithm for propositional satisfiability. IEEE Trans. on Computers, 1999,48(5): 506-521. [doi: 10.1109/12.769433].

同被引文献22

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部