期刊文献+

基于Shapelet剪枝和覆盖的时间序列分类算法 被引量:17

Shapelet Pruning and Shapelet Coverage for Time Series Classification
下载PDF
导出
摘要 时间序列shapelets是时间序列中能够最大限度地表示一个类别的子序列.解决时间序列分类问题的有效途径之一是通过shapelets转换技术,将shapelets的发现与分类器的构建相分离,其主要优点是优化了shapelets的选择过程,并能够灵活应用不同的分类策略.但该方法也存在不足:一是在shapelets转换时,用于产生最好分类结果的shapelets数量是很难确定的;二是被选择的shapelets之间往往存在着较大的相似性.针对这两个问题,首先提出了一种简单有效的shapelet剪枝技术,用于过滤掉相似的shapelets;其次,提出了一种基于shapelets覆盖的方法来确定用于数据转换的shapelets的数量.通过在多个数据集上的测试实验,表明了所提出的算法具有更高的分类准确率. Time series shapelets are subsequences of time series that can maximally represent a class. One of the most promising approaches to solve the problem of time series classification is to separate the process of finding shapelets from classification algorithm by adopting a shapelet transformation. The main advantages of that technique are that it optimizes the process of shapelets selection and different classification strategies could be applied. Important limitations also exist in that method. First, although the number of shapelets selected for the transformation directly affects the classification result, the quantity of shapelets which yields the best data for classification is hard to be decided. Second, previous algorithms often inevitably result in similar shapelets among the selected shapelets. This work addresses the latter problem by introducing an efficient and effective shapelet pruning technique to filter similar shapelets and decrease the number of candidate shapelets at the same time. On this basis, a shapelet coverage method is proposed for selecting the number of shapelets for a given dataset. Experiments using the classic benchmark datasets for time series classification demonstrate that the proposed transformation can improve classification accuracy.
出处 《软件学报》 EI CSCD 北大核心 2015年第9期2311-2325,共15页 Journal of Software
基金 北京市自然科学基金(4142042) 中央高校基本科研基金(2015YJS049)
关键词 时间序列分类 shapelet剪枝 shapelet覆盖 time series classification shapelet pruning shapelet coverage
  • 相关文献

参考文献17

  • 1Lines J, Davis LM, Hills J, Bagnall A. A shapelet transform for time series classification. In: Proc. of the 18th ACM SIGKDD Int'l Conf. on Knowledge Discovery and Data Mining (KDD 2012). Beijing: ACM Press, 2012. 289-297. [doi: 10.1145/2339530. 2339579].
  • 2Ding H, Trajcevski G, Scheuermann P, Wang X, Keogh EJ. Querying and mining of time series data: Experimental comparison of representations and distance measures. In: Proc. of the 34th lnt'l Conf. on Very Large Data Bases (VLDB 2008). Auckland: Springer-Verlag, 2008. 1542-1552. [doi: 10.14778/1454159.1454226].
  • 3Rakthanmanon T, Campana B, Mueen A, Batista G, Westover B, Zhu Q, Zakaria J, Keogh E. Searching and mining trillions of time series subsequences under dynamic time warping. In: Proc. of the 18th ACM SIGKDD Int'l Conf. on Knowledge Discovery and Data Mining (KDD 2012). Beijing: ACM Press, 2012. 262-270. [doi: 10.1145/2339530.2339576].
  • 4Berndt DJ, Clifford J. Using dynamic time warping to find patterns in time series. In: Proc. of the KDD Workshop. 1994. 359-370.
  • 5Ye L, Keogh EJ. Time series shapelets: A new primitive for data mining. In: Proc. of the 15th ACM SIGKDD Int'l Conf. on Knowledge Discovery and Data Mining (KDD 2009). Paris: ACM Press, 2009. 947-956. [doi: 10.1145/1557019.1557122].
  • 6Ye L, Keogh EJ. Time series shapelets: A novel technique that allows accurate, interpretable and fast classification. Data Mining and Knowledge Discovery, 2011,22(1-2):149-182. [doi: 10.1007/s10618-010-0179-5].
  • 7Mueen A, Keogh E J, Young N. Logical-Shapelets: An expressive primitive for time series classification. In: Proc. of the 17th ACM SIGKDD Int'l Conf. on Knowledge Discovery and Data Mining (KDD 2011). San Diego: ACM Press, 2011. 1154-1162. [doi: 10. 1145/2020408.2020587].
  • 8Rakthanmauon T, Keogh EJ. Fast shapelets: A scalable algorithm for discovering time aeries shapelets. In: Proc. of the ~3th SIAM Int'l Conf. on Data Mining (SDM 2013). Austin: SIAM Press, 2013. 668-676. [doi: 10.1137/1.9781611972832.74].
  • 9Keogh E, Lonardi S, Ratanamahatana CA. Towards parameter-free data mining. In: Proe. of the ACM SIGKDD Int'l Conf. on Knowledge Discovery and Data Mining (KDD 2004). Seattle: ACM Press, 2004. 206-215. [doi: 10.1145/1014052.1014077].
  • 10Esling P, Agon C. Time-Series data mining. ACM Computing Surveys, 2012,45(1):12:1-12:34. [doi: 10.1145/2379776.2379788].

同被引文献50

  • 1李海林,梁叶.基于关键形态特征的多元时间序列降维方法[J].控制与决策,2020,35(3):629-636. 被引量:11
  • 2李德文,郭胜均.中国煤矿粉尘防治的现状及发展方向[J].金属矿山,2009,38(S1):747-752. 被引量:64
  • 3Wen Weibin, Jian Kailin, Luo Shaoming. 2D numericl manifold method based on quartic uniform B-spline inter- polation and its application in thin plate bending[J]. Ap- plication Mathematics and Mechanics (English Edition),2013,34(8) :1017 - 1030.
  • 4Gonzflez M,Bergmeir C,Triguero I,et al. On the stopping criteria for k-nearest neighbor in positive unlabeled time series classification problems [ J ]. Information Sciences, 2016,328:42 - 59.
  • 5Li Wei, Keogh E. Semi-supervised time series classifica- tion [ C ]//Acm Sigkdd International Conference on Knowledge Discovery & Data Mining. 2006:748-753.
  • 6Goudarzi S, Wan H H, Anisi M H, et al. A novel model on curve fitting and particle swarm optimization for vertical handover in heterogeneous wireless networks [ J]. Mathe- matical Problems in Engineering,2015 (4) : 1 - 16.
  • 7Verma B, Li M M. Nonlinear curve fitting to stopping power data using RBF neural networks [ J]. Expert Sys- tems with Applications, 2016,45 (C) : 161 - 171.
  • 8Lines J,Bagnall A. Time series classification with ensem-bles of elastic distance measures [ J ]. Data Min Knowl Disc,2015,29:565 - 592.
  • 9Tavenard R, Amsaleg L. Improving the efficiency of tra- ditional DTW accelerators [ J]. Knowledge & Information Systems,2015,42 ( 1 ) : 215 - 243.
  • 10李晓光,宋宝燕,于戈,王大玲.基于小波的时间序列流伪周期检测方法[J].软件学报,2010,21(9):2161-2172. 被引量:6

引证文献17

二级引证文献71

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部