期刊文献+

面向智能电网的网络态势评估模型及感知预测 被引量:16

Evaluation model of network situation and its awareness prediction oriented to intelligent power grid
下载PDF
导出
摘要 将态势感知技术应用于智能电网中,提出一种针对智能电网的态势评估模型,结合自回归(AR)预测模型、最小二乘支持向量机(LSSVM)预测模型、RBF神经网络预测模型等预测方法,实现基于信息融合的组合预测方法.经实测数据验证分析,该方法可以有效地描述电网网络安全的态势发展情况,且预测精度高于单一的预测模型. Information security intelligent power grid is important issue concerned in national energy source security and economic lifelines. In this paper, the situation awareness technique is used in the intelligent power grid and a situation assessment model was proposed for this power grid. The autoregressive (AR) prediction model, least squares support vector machine (LSSVM) prediction model, and RBF neural network prediction model were integrated with this method to form an information fusion-based integral prediction model. It was known after analysis and validation of actually tested data, that this method could be used to effectively describe the situation development of network security of power grid, and the prediction precision would be higher than that of single prediction model.
出处 《兰州理工大学学报》 CAS 北大核心 2015年第4期99-103,共5页 Journal of Lanzhou University of Technology
关键词 智能电网 信息安全 态势感知 组合预测 intelligent power grid information security situation awareness integral prediction
  • 相关文献

参考文献11

二级参考文献77

  • 1王慧强,赖积保,朱亮,梁颖.网络态势感知系统研究综述[J].计算机科学,2006,33(10):5-10. 被引量:126
  • 2任伟,蒋兴浩,孙锬锋.基于RBF神经网络的网络安全态势预测方法[J].计算机工程与应用,2006,42(31):136-138. 被引量:71
  • 3谭跃进,吴俊,邓宏钟.复杂网络中节点重要度评估的节点收缩方法[J].系统工程理论与实践,2006,26(11):79-83. 被引量:257
  • 4庞立会,胡华平.恶意代码模糊变换技术研究[J].计算机工程,2007,33(12):154-156. 被引量:3
  • 5陈峰,罗养霞,陈晓江,龚晓庆,房鼎益.网络攻击技术研究进展[J].西北大学学报(自然科学版),2007,37(2):208-212. 被引量:15
  • 6LIU P R,MENG M Q H, LIU P X,et al. Optical flow and active contour for moving object segmentation and detection in monocular robot [C]//Proeeedings 2006 IEEE International Conference on Robotics and Automation. Washigton DC: IEEE, 2006 : 4075-4080.
  • 7MAGGIO E,CAVALLARO A. Hybrid particle filter and mean shift tracker with adaptive transition model [J]. Acoustics Speech and Signal Processing, 2005,11: 221-224.
  • 8COMANICIU D, RAMESH V, MEER P. Kernel-based object tracking [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003,25 (5): 564-577.
  • 9GORDON N J, SALMOND D J, SMITH A F M. Novel approach to nonlinear/non-gaussian bayesian state estimation [J]. IEEE Proceedings on Radar and Signal Processing, 1993, 140(2):107-113.
  • 10BRASNETT P, MIHAYLOVA L, BULL D. Sequential Monte Carlo tracking by fusing multiple cues in video sequences [J]. Image and Vision Computing,2007,25(1):1217-1227.

共引文献142

同被引文献118

引证文献16

二级引证文献117

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部