期刊文献+

一种新的边缘保持图像聚类分割算法

A Novel Edge-Preserving Image Clustering Segmentation Algorithm
下载PDF
导出
摘要 针对受噪声影响的图像,提出了一种基于边缘保持的快速全局k均值聚类分割算法,该方法包括双边滤波预处理和快速全局k均值聚类分割两部分,在噪声存在的情况下,能有效抑制过分割,并且解决了k均值聚类初始中心点的随机选择问题.实验结果表明,该方法提高了聚类分割的准确性. A new fast global k-means clustering segmentation based on edge-preserving is presented for the images affected by noise. The method is constructed by bilateral filtering and fast global k-means clustering. In the case of the presence of noise, the proposed method can effectively inhibit the over-segmentation, and also solve the k-means clustering initial centers randomly selected questions. Experimental results show that the proposed method improves the accuracy of the clustering segmentation.
作者 刘晨 袁玲
出处 《伊犁师范学院学报(自然科学版)》 2015年第3期67-72,共6页 Journal of Yili Normal University:Natural Science Edition
基金 喀什师范学院校内教研教改重点项目(KJDZ1303)
关键词 聚类分割 K均值 边缘保持 clustering segmentation k-means edge-preserving
  • 相关文献

参考文献16

  • 1Bovik A C. On detecting edge in speckle imagery [ J ]. IEEE Trans. on Acoustic Speech and Signal Processing, 1988,36 ( 10 ) : 1618-1627.
  • 2杨学志,沈晶.基于区域MRF的SAR图像快速分割算法[J].工程图学学报,2009,30(6):98-106. 被引量:7
  • 3Otsu N. A threshold selection method from gray- Level histograms [ J]. IEEE Tronsactions on .5vstems, Man and Cybernetics, 1979,9( 1): 62-66.
  • 4Soh L K, Tsatsoulis C, Gineris D. ARKTOS: An intelligent system for SAR sea ice image classification [J ]. IEEE Trans. (;eo.se Remote Sensing, 2004,42( 1 ) : 229-248.
  • 5Adams R, Bischof L. Seeded region growing[ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1994, 16( 6 ) : 641-647.
  • 6Yu Q, Clausi D A. Filament preserving segmentation for SAR sea ice imagery using a new statistical model [J]. IEEE Trans. Geosei Remote Sen,sing, 2006,44 ( 12 ) : 3678-3684.
  • 7Wang Xiaofeng, Zhang Xiaoping. A new localized superpixel Markov random field for image segmentation [ A ]. 2009 IEEE Inter- national Conference on Multimedia and Expo [ C ]. New York : IEEE Computer Society, 2009 : 642-645.
  • 8JHan,JKamber.数据挖掘概念与技术(第一版)[M].范明,忑小峰,等译.北京:机械工业出版社,2006.185-217.
  • 9谢娟英,蒋帅,王春霞,张琰,谢维信.一种改进的全局K-均值聚类算法[J].陕西师范大学学报(自然科学版),2010,38(2):18-22. 被引量:47
  • 10Likas A, Vlassis M, Verbeek J. The global K-means clustering algorithm [ J ]. Pattern Recognition, 2003,36 ( 2 ) : 451 - 461.

二级参考文献56

  • 1杜成,苏光大.用于人脸识别的正面人脸图像眼镜摘除[J].清华大学学报(自然科学版),2005,45(7):928-930. 被引量:11
  • 2杨善林,李永森,胡笑旋,潘若愚.K-MEANS算法中的K值优化问题研究[J].系统工程理论与实践,2006,26(2):97-101. 被引量:191
  • 3Ma W Y, Manjunath B S. Edgeflow: a technique for boundary detection and image segmentation [J]. IEEE Trans. Image Processing, 2000, 9(8): 1375-1388.
  • 4Nguyen H T, Worring M, Boomgaard R van den. Watersnakes: Energy-driven watershed segmentation [J]. IEEE Trans. Pattern Anal. Machine Intell, 2003, 25(3): 330-342.
  • 5Adams R, Bischof L. Seeded region growing [J]. IEEE Trans. Pattern Anal. Machine Intell, 1994, 16(6): 641-647.
  • 6Cootes T F, Taylor C J, Cooper D H, et al. Active shape models-their training and application [J]. Computer Vision and Image Understanding, 1995, 61(1): 38-59.
  • 7Kass M, Witkin A, Terzopoulos D. Snakes: active contour models [J]. Int'l J. Computer Vision, 1987, 1(4): 321-331.
  • 8Liu C, Freeman W T, Szeliski R, et al. Noise estimation from a single image [C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2006: 901-908.
  • 9Tomasi C, Manduchi R. Bilateral filtering for gray and color images [C]//Proc. 6^th Int'l Conf. on Computer Vision, 1998: 839-846.
  • 10Elad M. On the origin of the bilateral filtering and ways to improve it [J]. IEEE Trans. Image Processing, 2002, 11(10): 1141-1151.

共引文献195

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部