期刊文献+

一种基于密度的快速聚类方法 被引量:6

Fast Density-Based Clustering Approach
下载PDF
导出
摘要 具有噪声的基于密度的聚类方法(Density-based spatial clustering of applications with noise,DBSCAN)在数据规模上的扩展性较差。本文在其基础上提出一种改进算法——具有噪声的基于密度的快速聚类方法(Fast-density-based spatial clustering of applications with noise,F-DBSCAN),对核心对象邻域中的对象只作标记,不再进行扩展检查,通过判断核心对象邻域中是否存在已标记对象来实现簇合并,对边界对象判断其邻域中是否存在核心对象来确认是否为噪声。此方法避免了原始算法中对重叠区域的重复操作,在不需创建空间索引的前提下,其时间复杂度为O(nlogn)。通过实验数据集和真实数据集,验证其聚类效果及算法效率。实验表明F-DBSCAN算法不仅保证了有良好的聚类效果及算法效率,并且在数据规模上具有良好的扩展性。 Density-based spatial clustering of applications with noise(DBSCAN)has poor scalability on the data size,especially when the amount of data increases.Here an improved adaptive fast-density-based spatial clustering of applications with noise(F-DBSCAN)algorithm is proposed,with no longer checks of the objects inside the neighborhood of core objects,but just the mark of them.Merging clusters is performed by determining whether there exist the marked objects in the neighborhood of core objects.Noisy objects are recognized by checking whether the neighborhood of border ones contains a core ones.The proposed algorithm can avoid the repeated checking of overlapping area of the original DBSCAN without building the spatial index,thus improving its efficiency substantially with time complexity approaching O(nlogn).The clustering quality of F-DBSCAN is validated on both artificial and real datasets,and its efficiency is also validated on two real datasets from different industries.The empirical results suggest that F-DBSCAN can achieve good clustering quality as well as better efficiency and scalability.
出处 《数据采集与处理》 CSCD 北大核心 2015年第4期888-895,共8页 Journal of Data Acquisition and Processing
基金 江苏省社会发展(BE2010638)资助项目
关键词 聚类 密度 F-DBSCAN 算法效率 clustering density F-DBSCAN algorithm efficiency
  • 相关文献

参考文献15

  • 1Khani F, Hosseini M J, Abin A A, et al. An algorithm for discovering clusters of different densities or shapes in noisy data sets[C]//Processing of the 28th Annual ACM Symposium on Applied Computing. [S. 1. ]: ACM, 2013:144-149.
  • 2Patwary M, Palsetia D, Agrawal A, et al. A new scalable parallel DBSCAN algorithm using the disjoint-set data structure [C]//High Performance Computing, Networking, Storage and Analysis. Salt Lake City, Utah, USA.. IEEE, 2012:10-16.
  • 3Thanh T N, Drab K, Daszykowski M. Revised DBSCAN algorithm to cluster data with dense adjacent clusters[J]. Chemo- metrics and Intelligent Laboratory Systems, 2013,120 : 92-96.
  • 4Singh S, Awekar A. Incremental shared nearest neighbor density-based clustering[C]//Proceeding of the 22nd ACM Inter- national Conference on Information Knowledge Management. [S. 1. ]:ACM, 2013.,1533-1536.
  • 5潘玲玲,张育平,徐涛.核DBSCAN算法在民航客户细分中的应用[J].计算机工程,2012,38(10):70-73. 被引量:11
  • 6许虎寅,王治和.一种改进的基于密度的聚类算法[J].微电子学与计算机,2012,29(2):44-47. 被引量:20
  • 7许宏玮.基于密度与路径的谱聚类算法研究[D].广州:广东工业大学,2013.
  • 8周水庚,周傲英,曹晶,胡运发.一种基于密度的快速聚类算法[J].计算机研究与发展,2000,37(11):1287-1292. 被引量:89
  • 9赵文,夏桂书,苟智坚,闫振兴.一种改进的DBSCAN算法[J].四川师范大学学报(自然科学版),2013,36(2):312-316. 被引量:17
  • 10陈刚,刘秉权,吴岩.一种基于高斯分布的自适应DBSCAN算法[J].微电子学与计算机,2013,30(3):27-30. 被引量:24

二级参考文献58

共引文献227

同被引文献46

引证文献6

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部