期刊文献+

多指标区间数群决策问题的组合算法研究 被引量:3

Research for combination algorithm of interval multiple attribute group decision making
下载PDF
导出
摘要 针对一类多指标群决策问题,根据最小二乘原理提出了最优离合点的概念。运用模拟植物生长算法与加速遗传算法组合算法(PGSA-RAGA),求解得出最优离合点,并且根据投影寻踪模型利用最优离合点所组成的矩阵,得出最终投影值与排序结果。该方法解决了以往以平均数体现群决策的综合意愿所出现的不足的问题,在指标的属性权重完全未知的情况下,得到最优的排序结果,经过对比分析,该方法的可行性得到验证,更加简便易操作,并且有效地推广到大规模多指标群决策问题。 For a class of multi-attribute group decision making problems, the concept of optimal clutch points is introduced according to the principle of least squares. The combining algorithm of Plant Growth Simulation Algorithm and Accelerating Genetic Algorithm(PGSA-RAGA)is used to obtain the optimal clutch points, and then the projection pursuit model is used with the matrix of the optimal clutch points to get the final projection value and the sorting results. This method solves the problem, which is usually inadequate to use the average number embodying the integrated willingness of the group decision making, in order to get the best sorting results on condition that the property of evaluation features is completely unknown. Through comparative analysis, the feasibility of this method is verified, and it is more simple and easier to operate, which effectively solves many multi-attribute group decision making problems.
机构地区 江南大学商学院
出处 《计算机工程与应用》 CSCD 北大核心 2015年第17期48-52,共5页 Computer Engineering and Applications
基金 国家自然科学基金(No.70371051) 浙江省高校人文社科重点研究基地支撑子项目(No.RWSKZD04-2012ZB2)
关键词 模拟植物生长算法与加速遗传算法(PGSA-RAGA)组合算法 区间数 群决策 最优离合点 投影寻踪 Plant Growth Simulation Algorithm and Accelerating Genetic Algorithm(PGSA-RAGA)combination algo-rithm interval number group decision making optimal clutch point projection pursuit
  • 相关文献

参考文献15

二级参考文献137

共引文献161

同被引文献36

引证文献3

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部