期刊文献+

一种高分辨率3维图像的自适应降噪算法 被引量:4

Adaptive filtering algorithm for high resolution 3-D images
下载PDF
导出
摘要 为了获得高保真3维图像,采用了一种针对高分辨率3维图像的自适应均值降噪算法。首先使用一种由激光器、高分辨率3维相机、直线电机和计算机等设备组成的线激光高精度3维测量实验系统对自然纹理皮革进行测量。然后针对系统测量所得的高分辨率3维自然纹理图像(每英寸点数大于1000),进行了理论分析和实验验证,取得了降噪后的高保真3维图像数据,并与传统的均值滤波、小波变换滤波的降噪效果进行对比。结果表明,该算法能自动选取最优的降噪窗口,有效地去除3维图像的噪声信息,并保留高分辨率图像丰富的边缘、细节信息,最终得到高保真的高分辨率3维自然纹理图像。该实验结果对于高分辨率图像的降噪问题是十分有帮助的。 In order to obtain high-fidelity 3-D images,an adaptive mean filtering algorithm for high resolution 3-D images was proposed. Firstly,a high-precision 3-D linear laser measuring system consisting of a laser,two high-resolution 3-D cameras,two linear motors and a computer was established to measure the texture of leather. After theoretical analysis and experimental verification of the high-resolution 3-D texture images( dots per inch 1000) collected by the measuring system,the data of highfidelity three dimensional images after filtering were gotten. The effect of the adaptive mean filtering algorithm was compared with the effects of mean filtering method and wavelet threshold filtering method. The results show that the adaptive mean filtering algorithm can remove noise of 3-D images effectively,select the appropriate filtering window automatically,and also keep details and edge information of high resolution images. Finally,the high resolution 3-D texture images with high fidelity would be obtained. The experimental results are very helpful for denoising processing of high resolution images.
出处 《激光技术》 CAS CSCD 北大核心 2015年第5期697-701,共5页 Laser Technology
基金 广东省创新应用示范专项资金资助项目(2012B011300025)
关键词 图像处理 高保真3维图像 自适应均值降噪 高分辨率 线激光 3维测量 image processing high-fidelity 3-D image adaptive mean filtering high resolution line laser 3-D measurement
  • 相关文献

参考文献4

二级参考文献46

  • 1路兴昌,宫辉力,赵文吉,张爱武,李小娟.基于激光扫描数据的三维可视化建模[J].系统仿真学报,2007,19(7):1624-1629. 被引量:35
  • 2Seok J W,Bae K S.Speech Enhancement with Reduction of Noise Components in the Wavelet Domain[A].Proc of the ICASSP[C].Munich,1997,2:1323-1326.
  • 3Lu C T,Wang H C.Enhancement of Single Channel Speech Based on Masking Property and Wavelet Transform[J].Speech Communication,2003,41(2-3):409-427.
  • 4Medina C A,Aleaim A,Apolinario J A.Wavelet De-noising of Speech Using Neural Networks for Threshold Selection[J].Electronics Letters,2003,39(25):1869-1871.
  • 5Mallat S G,杨力华.信号处理的小波导引[M].北京:机械工业出版社,2002:340-358.
  • 6Donoho D L.De-noising by Soft-thresholding[J].IEEE Trans on Information Theory,1995,41(3):613-627.
  • 7Zhang X P,Desai M T.Adaptive De-noising Based on SURE Risk[J].IEEE Signal Processing Letters,1998,5(10):265-267.
  • 8Vautard R,Yiou P,Ghil M.Singular-spectrum Analysis:A Toolkit for Short Noisy Chaotic Signals[J].Physica D,1992,58(1-4):95-126.
  • 9Alexandros Leontitsis,Tassos Bountis,Jenny Pagge.An Adaptive Way for Improving Noise Reduction Using Local Geometric Projection[J].Chaos,2004,14(1):106-110.
  • 10Lindenbaum M, Fischer M, Bruckstein A M. On Gabor contribution to image enhancement. Pattern Recognition, 1994, 27(1): 1-8.

共引文献96

同被引文献39

引证文献4

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部