期刊文献+

基于全局和局部流形结构的高光谱图像特征提取算法 被引量:3

Hyperspectral Image Feature Extraction Algorithm Based on Global and Local Manifold Structure
下载PDF
导出
摘要 针对目前高光谱图像基于流形学习的无监督特征提取算法中只能够单独描述高维数据空间局部或者全局的几何结构,并且没有一种算法能够同时保持高维数据全局和局部的几何结构的问题,提出了一种基于全局和局部流形结构的无监督特征提取算法(GLMS)对高光谱图像进行特征提取.算法基于流形学习基本理论,需要建立两种保持流形结构的近邻图,分别用来描述数据的全局和局部的流形结构,通过求解广义特征值问题获得重构权值矩阵进而得到低维嵌入空间的最优投影,以达到降维的目的.在AVIRIS高光谱图像以及Indian Pine和Salina数据集上进行仿真对比实验,结果表明,提出的算法在分类精度和计算效率上有较好的提高. High spectrum image manifold learning unsupervised feature extraction algorithm can only separate description based on high dimensional data space whether it is local or global geometric structure or not,there is no algorithm can also maintain a high dimensional data of global and local geometric structure.A novel unsupervised feature extraction algorithm is proposed based on global and local manifold structure(GLMS)for feature extraction of hyperspectral image.Manifold learning algorithms are based on the basic theory,which establishes two maintain manifold structure neighbor graphs,and it is applied to describe the data of the global and local manifold structure,by solving the generalized eigenvalue problem to obtain the optimal projection reconstruction weight matrix and then to get the low dimensional embedding space to achieve the purpose of reducing dimension.In the AVIRIS hyperspectral image tests on Indian Pine and Salina data set,experimental results show that the proposed algorithm has better improvement in classification accuracy and computational efficiency.
出处 《沈阳大学学报(自然科学版)》 CAS 2015年第4期283-288,共6页 Journal of Shenyang University:Natural Science
关键词 高光谱图像 无监督特征提取 全局和局部流形结构 流形学习 hyperspectral image unsupervised feature extraction global and local manifold manifold learning
  • 相关文献

参考文献9

  • 1Plaza A, Benediktsson J A, Boardman J W, et al. Recent Advances in Techniques for Hyperspectral Image Processing[J]. Remote Sensing of Environment, 2009, 113(1) ~ 110 - 122.
  • 2Green R O,Eastwood M L, Sarture C M, et al. Imaging Spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) [ J ]. Remote Sensing of Environment, 1998,65 (3) : 227 - 248.
  • 3Bachmann C M, Ainsworth T L. Bathymetric Retrieval from Mani{old Coordinate Representations of Hyperspectral Imagery [ C ] // IEEE International Conference on Geoscience ~ Remote Sensing Symposium. IEEE, 2007 .. 1548 - 1551.
  • 4Bachmann C M, Ainsworth T L, Gillis D B, et al. Modeling Coastal Waters from Hyperspectral Imagery Using Manifold Coordinates [-C~ // IEEE International Conference on Geoscience ~ Remote Sensing Symposium. IEEE, 2006 : 356 - 359.
  • 5Belkin M, Niyogi P. Laplacian Eigenmaps and Spectral Techniques for Embedding and Clustering[,J]. Advances in Neural Information Processing Systems, 2002, 1 (14) : 585 - 591.
  • 6Zhang T H, Yang J, Zhao D L, et al. Linear Local Tangent Space Alignment and Application to Face Recognition[J]. Neurocomputing, 2007, 70 (7) .. 1547 - 1553.
  • 7H.e X F,Cai D, Yan S C, et al. Neighborhood Preserving Embedding [ J ]. IEEE International Conference on Computer Vision, 2005,2 : 1208 - 1213.
  • 8He X F, Niyogi P. Locality Preserving Projections [J]. Advances in Neural Information Processing Systems, 2004,2(16) : 153 - 160.
  • 9甘资先,周方俊,肖奕.多维尺度分析中的算法研究[J].清华大学学报(自然科学版),1991,31(6):20-27. 被引量:8

二级参考文献2

  • 1肖奕,1990年
  • 2Zhou F,1988年

共引文献7

同被引文献18

  • 1ZHANG D, Automated biometrics: technologies and systems[M]. Norwell, MA: Kluwer, 2000.
  • 2JAIN A, ROSS A, PRABHAKAR S. An introduction to biometric recognition[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2004,14 (1):4- 20.
  • 3PANG B , ZHANG D, WANG K. Tongue image analysis for appendicitis diagnosis[J]. Information Sciences, 2005, 175(3) : 160 - 176.
  • 4ZHANG L, ZHANG D, ZHENG Y. Wavelet based analysis of Doppler ultrasonic wrist-pulse signals[C]// Proceeding of the 2008 International Conference on Biomedical Engineering & Informaties, Washington: IEEE Computer Society, 2008:539 - 543.
  • 5GUO D, ZHANG D, LID. A novel breath analysis system based on electronic olfaction [J]. IEEE Transaction on Bio-Medical Engineering, 2010, 57 ( 11 ) : 2753 - 2762.
  • 6张薇.虹膜钠环检测算法研究[D].沈阳:沈阳工业大学,2014.
  • 7YU X, SONG J, YUAN W Q. Pupil contour extraction method of anti-light spot interference for iris image captured in visible light[C]//Proceedings of 9th Chinese Conference, CCBR 2014, Shenyang, China, November 7 -9, 2014:339 - 346.
  • 8GONZALEZ R C, WOODS R E. Digital Image Process[M]. Boston: Addison-Wesley, 2012.
  • 9刘洋,李霞,王娜,王清华,彭文达.基于特定感兴趣区采样的虹膜定位改进算法[J].光子学报,2008,37(6):1277-1280. 被引量:11
  • 10苑玮琦,白晓光.一种新颖的虹膜轮廓提取方法[J].光学学报,2009,29(8):2158-2163. 被引量:6

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部