期刊文献+

圆阵二维MUSIC谱快速计算方法研究 被引量:2

Fast Computation Methods Research for Two Dimensional MUSIC Spectrum Based on Circular Array
下载PDF
导出
摘要 针对二维波达方向估计时MUSIC谱的快速计算问题,研究了均匀圆阵变换到虚拟线阵的MUSIC算法(UCA-ULA-MUSIC)、流形分离MUSIC算法(MS-MUSIC)、傅立叶域线性求根MUSIC算法(FD-Line-Search-MUSIC)、基于FFT的2n元均匀圆阵MUSIC算法(2n-UCA-FFT-MUSIC)与基于FFT的任意圆阵MUSIC算法(ACAFFT-MUSIC)。对各种算法快速计算二维MUSIC谱的实现步骤进行了总结。在此基础上,给出了各算法计算二维MUSIC谱的计算复杂度表达式,并以传统方法为参考,对比了各种快速算法相对于传统方法的计算复杂度比值;同时,针对不同的阵列形式,对适用的快速算法的测向性能进行了仿真对比。根据分析和对比的结果,指出MSMUSIC算法与ACA-FFT-MUSIC算法具有更高的工程应用价值,由具体的情况单独或分频段联合使用MS-MUSIC算法与ACA-FFT-MUSIC算法,可以使测向系统较好的兼顾测向性能与时效性。 According to the fast computation problem of MUSIC spectrum in two dimensional direction of arrival estimation, the fast algorithms by manifold transformation or spectrum function transformation are studied. The implementation steps of computation method for two dimensional MUSIC spectrum by these algorithms are summarized. Furthermore, expressions for computational complexity of discussed algorithms in computing two dimensional MUSIC spectrum are presented. With refer- ence to the conventional method, the ratio of computational complexity of discussed algorithms is compared. Meanwhile, for different circular arrays, the direction finding performance of applicable algorithms is compared by simulation. It is proved that the MUSIC algorithm based on Manifold Separation (MS-MUSIC) and Fast Fourier Transformation (FFT) which suits to arbitrary circular array (ACA-FFT-MUSIC) have higher engineering value according to the results of analysis and com- parison. The performance and timeliness of direction finding system can be ensured by individual use of each method in whole frequency or combined use of the two in different frequency band based on different conditions.
出处 《信号处理》 CSCD 北大核心 2015年第7期849-859,共11页 Journal of Signal Processing
关键词 波达方向估计 二维MUSIC谱 圆阵 计算量 direction of arrival estimation two dimensional MUSIC spectrum circular array computational complexity
  • 相关文献

参考文献19

  • 1Schmidt R.Multiple emitter location and signal parameter estimation[J].IEEE Trans.Antennas Propag,1986,34(5):276-280.Reprinted from Proc.RADC Spectr.Es- timation Workshop,Rome,NY,1979.
  • 2Weng Z Y,Djuric'P M.A search-free DOA estimation algorithm for coprime arrays[J].Digital Signal Process- ing,2014,24:27-33.
  • 3Suleiman,Wassim,Parvazi,et al.Search-free decentral- ized direction-of-arrival estimation using common roots for non-coherent partly calibrated arrays[C]//2014 IEEE International Conference on Acoustics,Speech,and Sig- nal Processing,2014:2292-2296.
  • 4李建峰,张小飞,汪飞.基于四元数的Root-MUSIC的双基地MIMO雷达中角度估计算法[J].电子与信息学报,2012,34(2):300-304. 被引量:17
  • 5姚晖,吴瑛.相干分布源DOA与角度扩展估计求根算法[J].信号处理,2013,29(8):1058-1063. 被引量:1
  • 6Zheng G M.Beamspace root-MUSIC algorithm for joint DOD DOA estimation in bistatic MIMO radar[J].Wire- less Personal Communications,2014,75(4),1879-1889.
  • 7Goossens R,Rogier H,Werbrouck S.UCA root-MUSIC with sparse uniform circular arrays[J].IEEE Transac- tions on Signal Processing,2008,56(8):4095-4099.
  • 8Belloni F,Richter A,Koivunen V.DOA estimation via manifold separation for arbitrary array structures[J].IEEE Transactions on Signal Processing,2007,55(10);4800-4810.
  • 9潘捷,周建江,汪飞.基于流形分离技术的稀疏均匀圆阵快速DOA估计方法[J].电子与信息学报,2010,32(4):963-966. 被引量:8
  • 10Michael R,Alex B.Direction-of-arrival estimation for nonuniform sensor arrays:from manifold separation to Fourier domain MUSIC methods[J].IEEE Transactions on Signal Processing,2009,57(2):588-599.

二级参考文献102

  • 1Mathews C P and Zoltowski M D. Eigenstructure techniques for 2-D angle estimation with uniform circular arrays. IEEE Transactions on Signal Processing, 1994, 42(9): 2395-2407.
  • 2Davies D E N and Rudge A W. Ed. The Handbook of Antenna Design. London, UK, Peregrinus, 1983, Vol.2, Ch.12.
  • 3Lian Xiao-hua and Zhou Jian-jiang. 2-D DOA estimation for uniform circular arrays with PM. 7th International Symposium on Antennas, Propagation & EM Theory, Beijing, 2006: 1-4.
  • 4Belloni F and Koivunen V. Beamspace transform for UCA: Error analysis and bias reduction. IEEE Transactions on Signal Processing, 2006, 54(8): 3078-3089.
  • 5Belloni F, Richter A, and Koivunen V. Extension of root-MUSIC to non-ULA array configurations IEEE International Conference on Acoustics, Speech, Signal Processing (ICASSP), France, 2006: 897-900.
  • 6Belloni F, Richter A, and Koivunen V. DoA estimation via manifold separation for arbitrary array structures. IEEE Transactions on Signal Processing, 2007, 55(10): 4800-4810.
  • 7Costa M, Richter A, Belloni F, and Koivunen V. Polynomial rooting-based direction finding for arbitrary array configurations 5th IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM08) Germeny, 2008: 58-62.
  • 8Doron M A and Doron E. Wavefield modeling and array processing, Part I Spatial sampling. IEEE Transactions on Signal Processing, 1994, 42(10): 2549-2559.
  • 9Rubsamen M and Gershman A B. Performance analysis of root-music-based direction-of-arrival estimation for arbitrary non-uniform array, 5th IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM08), Germeny. 2008: 381-385.
  • 10Goossens R, Rogier H, and Werbrouck S. UCA root-MUSIC with sparse uniform circular arrays. IEEE Transactions on Signal Processing, 2008, 56(8): 4095-4099.

共引文献71

同被引文献27

  • 1Schmidt R O. Multiple Emitter Location and Signal Pa- rameter Estimation [ J ]. IEEE Transactions on Antennas and Propagation, 1986, 34(3) :276-280.
  • 2J6r6me Bobin, J6r6my Rapin, Anthony Larue, et al. Sparsi- ty and Adaptivity for the Blind Separation of Partially Correlated Sources[ J ]. IEEE Transactions on Signal Pro- cessing,2015,63 (5) : 1199-1213.
  • 3Satoshi Ukai, Tomoya Takatani, Tsuyoki Nishikawa, et al. Blind source separation combining SIMO-model-based ICA and adaptive beamforming [ C ] //IEEE International Conference on Acustics, 2005 : 85- 88.
  • 4Lalan Kumar, Kushagra Singhal, Rohit Sinha, et al. Sig- nificance of the MUSIC-group delay method in an ICA- Beamforming framework for speech separation in multi source environments [ C ]////National Conference on Corn-munications (NCC) , 2013 : 1-5.
  • 5Hiroshi Sawada,Ryo Mukai,Shoji Makino. Direction of Arri- val Estimation for Multiple Source Signals Using Independ- ent Component Analysis [ C ]//International Symposium on Signal Processing and ITS Applications, 2003, 2:411-414.
  • 6Ying Zhang, Boon Poh Ng. MUSIC-like DOA Estimation without estimating the number of sources [ J ]. IEEE Trans- actions on Signal Processing,2010,58 (3) : 1668-1676.
  • 7Qi Chongying, Zhang Yongshun, Han Ying, et al. An algo- rithm on high resolution DOA estimation with unknown number of signal sources [ C ]//Proc 4th. conf. Microw Millimeter Wave Technol. ( IC M MT), 2004,8 : 227-230.
  • 8Jeffery C Chan, Hui Ma, Tapan K Saha, et al. Adaptive blind equalization for automatic partial discharge signal processing and pattern classification[ C]///Electrical Insu- lation and Dielectric Phenomena CEIDP,2013:1197-1200.
  • 9Zhang I-anyong,Liu Fanming, Liu Sheng. Multichannel blind signal adaptive separation algorithm based on pelyspectra a- nalysis[ C]///Control Conference (CCC) ,2013:4586-4591.
  • 10Sergio Cruces, Andrzej Cichocki, Shun-ichi Amari. On a new blind signal extraction algorithm: different criteria and stability analysis [ J ]. IEEE Signal Processing Let- ters, 2002, 9 (8) :233-236.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部