摘要
为了研究各种随机因素对结构分析及结构设计的影响,考虑有限体积法的基本方程离散简便,提出了将有限体积法与摄动法相结合来解决实体结构静力学随机分析的问题。采用摄动有限体积法建立了实体结构静力学随机分析的基本模型,推导了实体结构静力学随机分析的基本方程,计算了实体结构响应量的均值和方差等数字特征。通过算例分析,对比分析了有限体积法、Monte-Carlo法的计算结果:响应量的均值和方差的相对误差的最大值为0.59%,可以证明该方法计算精度较高;摄动有限体积法的计算时间为20 s,Monte-Carlo法的计算时间为110 000 s,说明该方法的计算效率高。
In order to study the influences of various random factors on the structural analysis and design in which the discrete equations of finite volume method( FVM) was simple,the FVM with perturbation method was proposed for the static stochastic analysis of the entity structure. The basic model of static stochastic analysis for the entity structure was established by perturbation-finite volume method( P-FVM). The equations of static stochastic analysis were derived and the digital characteristics such as mean value and variance of the responses of the entity structure were given. According to the examples analysis,the results of P-FVM are compared with Monte-Carlo method: the maximum relative error of mean value and variance of the responses is 0.59%,which proves that the computational accuracy of the proposed method is higher; the computation time of P-FVM is 20 s and the computation time of Monte-Carlo method is 110 000 s,proving that the computational efficiency of P-FVM is high.
出处
《哈尔滨工程大学学报》
EI
CAS
CSCD
北大核心
2015年第7期922-926,共5页
Journal of Harbin Engineering University
基金
国防科学技术工业委员会基础研究基金资助项目(J023914002)
关键词
有限体积法
摄动法
MONTE-CARLO法
随机分析
静力学
计算效率
finite volume method(FVM)
perturbation method
Monte-Carlo method
stochastic analysis
statics
computational efficiency