期刊文献+

视频中人体行为的慢特征提取算法 被引量:8

Slow feature extraction algorithm of human actions in video
下载PDF
导出
摘要 从复杂的人体行为中提取出重要的有区分力的特征是进行人体行为分析的关键。目前经典的特征分析方法大多是线性的特征分析技术,对于非线性处理会导致错误的结果,为此,提出了一种慢特征提取方法。首先,利用帧间差分法获取帧差图像序列,对选定的初始帧进行特征点检测;然后,利用光流法对特征点进行跟踪,收集训练立方体;最后,利用收集的训练立方体进行慢特征函数的机器学习,提取出慢特征并进行特征表示。实验中提取每种行为的慢特征进行对比,结果显示提取的慢特征随时间变化非常缓慢,并且在不同行为之间具有很强的区分力,表明该方法能够有效提取出人体行为的慢特征。 Extracting important and distinguishable features from complex human actions is the key for human actions analysis. In recent years,classical feature analysis methods are mostly linear feature analysis technologies,which result in error results for non-linear processing. This paper proposes a method of extracting slow features.First,the image sequence of frame difference was obtained by the difference between the consecutive frames and some feature points of selected beginning frame were detected. Next,the feature points were tracked by optical flow method and the training cuboids were collected. Finally,the slow feature functions were learned with the collected training cuboids,then the slow features could be extracted and represented. In the experiment,slow features of each action were extracted and compared with each other. The results show that the extracted slow features vary slowly with time and action interclass has good discrimination,which suggests that this method can extract slow features from human actions effectively.
出处 《智能系统学报》 CSCD 北大核心 2015年第3期381-386,共6页 CAAI Transactions on Intelligent Systems
基金 国家"973"计划项目(2012CB316304) 国家自然科学基金资助项目(61172128) 教育部创新团队发展计划项目(IRT201206)
关键词 人体行为 训练立方体 慢特征函数 慢特征 帧间差分法 human action training cuboids slow feature function slow feature frame difference
  • 相关文献

参考文献16

  • 1VENKATASUBRAMANIAN V, RENGASWAMY R, KAVURI S N, et al. A review of process fault detection and diagnosis: Part III: process history based methods[J]. Computers & Chemical Engineering, 2003, 27(3): 327-346.
  • 2CHERRY G A, QIN S J. Multiblock principal component analysis based on a combined index for semiconductor fault detection and diagnosis[J]. IEEE Transactions on Semiconductor Manufacturing, 2006, 19(2): 159-172.
  • 3DUNIA R, QIN S J. Joint diagnosis of process and sensor faults using principal component analysis[J]. Control Engineering Practice, 1998, 6(4): 457-469.
  • 4SCH?LKPOF B, SMOLA A, MVLLER K R. Nonlinear component analysis as a kernel eigenvalue problem[J]. Neural Computation, 1998, 10(5): 1299-1319.
  • 5WISKOTT L, SEINOWSKI T L. Slow feature analysis: unsupervised learning of invariances [J]. Neural Computation, 2002, 14(4): 715-770.
  • 6BERKES P, WISKOTT L. Slow feature analysis yields a rich repertoire of complex cell properties[J]. Journal of Vision, 2005, 5(6): 579-602.
  • 7XIA Qi, GAO Jianbin, XU Chunxiang. A new watermarking algorithm based on slowly feature analysis[C]//International Conference on Apperceiving Computing and Intelligence Analysis. Chengdu, China, 2008: 70-72.
  • 8GAO Jianbin, LI Jianping, XIA Qi. Slowly feature analysis of Gabor feature for face recognition[C]//2008 International Conference on Apperceiving Computing and Intelligence Analysis. Chengdu, China, 2008: 177-180.
  • 9HUANG Yaping, ZHAO Jiali, TIAN Mei, et al. Slow feature discriminant analysis and its application on handwritten digit recognition [C]//International Joint Conference on Neural Networks. Atlanta, USA, 2009: 1294-1297.
  • 10MA Kuijun, TAO Qing, WANG Jue. Nonlinear blind source separation using slow feature analysis with random features[C]//2010 20th International Conference on Pattern Recognition. Istanbul, Turkey, 2010: 830-833.

二级参考文献26

  • 1蔡涛,李德华,朱洲,吴险峰,石永辉.基于彩色图像序列的特征检测和跟踪[J].计算机工程,2005,31(8):12-13. 被引量:5
  • 2陈乐,吕文阁,丁少华.角点检测技术研究进展[J].自动化技术与应用,2005,24(5):1-4. 被引量:45
  • 3邢军.基于Sobel算子数字图像的边缘检测[J].微机发展,2005,15(9):48-49. 被引量:57
  • 4Shin Yoshizawa, Alexander Belyaev, Hans Peter Seidel. Fast and robust detection of crest lines on meshes [ C ]. In Proc. Symposium on Solid and physical modeling, 2005: 227-232.
  • 5Yutaka Ohtake, Alexander Belyaev, Hans-Peter Seidel. Ridge-valley lines on meshes via implicit surface fitting [ J ]. ACM Transactions Graphics, 2004, 23 ( 3 ) : 609- 612.
  • 6Charlie C L, Wang,. Bilateral recovering of sharp edges on feature-insensitive sampled meshes [ J ]. IEEE Transac- tions on Visualization and Computer Graphics, 2006, 12(4) :629-639.
  • 7Yang Yongliang, I_ai Yukun, Hu Shimin, and Helmut Pott- mann. Robust principal curvatures on multiple scales[ C]. In Proc. Symposium on Geometry Processing, 2006: 223-226.
  • 8Gatzke T, Grimm C. Feature detection using curvature maps and the rain-cut/max-flow algorithmiC], In Proc. Geomet- ric Modeling and Processing, 2006, 578-584.
  • 9Huang Jianbing, Menq Chia-Hsiang H. Automatic data seg- mentation for geometric feature extraction from unorganized 3-D coordinate points[ J]. IEEE Robotics and Automation Society, 2001, 17(3) :268-279.
  • 10Kris Demarsin, Denis Vanderstraeten, Tim Volodine, and Dirk Roose. Detection of closed sharp edges in point clouds using normal estimation and graph theory [ J ]. Compute. Aided Design, 2007, 39(4) :276-283.

共引文献76

同被引文献58

引证文献8

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部