期刊文献+

改进RBPF的移动机器人同步定位与地图构建 被引量:9

Simultaneous localization and mapping of an improved RBPF based mobile robot
下载PDF
导出
摘要 传统Rao-Blackwellized粒子滤波器(RBPF)在移动机器人同步定位与地图构建(SLAM)研究中,存在算法复杂度过高、占用内存空间过多导致实时性不理想的问题,因此提出一种改进算法。在某一特定状态的一组粒子集中,粒子的统计特性是一致的,改进算法从中选取一个代表粒子,进行卡尔曼更新步骤,并在同一粒子集中重复使用。同时结合Gmapping算法的建议分布和自适应重采样技术。实际Pioneer III移动机器人在机器人操作系统(ROS)平台上进行的实验表明,该方法在保证栅格地图精度的同时能提高系统的实时性,降低复杂度,提高运算速度。 As in the research of simultaneous localization and mapping( SLAM) of mobile robot applying traditional Rao-Blackwellized particle filter,the computational complexity is too high and memory space usage is too large,which causes poor real-time performance,an improved approach is proposed. Among a group of particles gathering in a particular state,the statistical properties of particles are identical. By applying the Kalman updating step to one representative particle in the group of particles,and using it repeatedly in the same group,the complexity is reduced and arithmetic speed is improved. Combining the proposed distribution and adaptive resampling methods from the Gmapping algorithm,the results of actual experiment carried out with Pioneer III robot and ROS platform illustrate that the real-time performance of the proposal could be enhanced while ensuring the quality of grid map.
出处 《智能系统学报》 CSCD 北大核心 2015年第3期460-464,共5页 CAAI Transactions on Intelligent Systems
基金 国家自然科学基金资助项目(51075420) 重庆市教委科学技术研究项目(KJ120519)
关键词 移动机器人 RAO-BLACKWELLIZED粒子滤波器 同步定位与地图构建(SLAM) Gmapping算法 自适应重采样技术 mobile robot Rao-Blackwellized particle filter simultaneous localization and mapping(SLAM) Gmapping algorithm adaptive resampling methods
  • 相关文献

参考文献11

  • 1SMITH R, SELF M, CHEESEMAN P. Estimating uncertain spatial relationships in robotics[M]//COX I J, WILFONG G T. Autonomous Robot Vehicles. New York: Springer, 1990: 167-193.
  • 2DISSANAYAKE G, HUANG S, WANG Z, et al. A review of recent developments in simultaneous localization and mapping[C]//6th International Conference on Industrial and Information Systems (ICIIS). Kandy, Sri Lanka, 2011: 477-482.
  • 3SMITH R C, CHEESEMAN P. On the representation and estimation of spatial uncertainty[J]. The International Journal of Robotics Research, 1986, 5(4): 56-68.
  • 4张文玲,朱明清,陈宗海.基于强跟踪UKF的自适应SLAM算法[J].机器人,2010,32(2):190-195. 被引量:33
  • 5DOUCET A, De FREITAS N, MURPHY K, et al. Rao-Blackwellised particle filtering for dynamic Bayesian networks[C]//Proceedings of the Sixteenth Conference on Uncertainty in Artificial Intelligence. San Francisco, USA, 2000: 176-183.
  • 6QU Liping, WANG Hongjian. An overview of robot SLAM problem[C]//International Conference on Consumer Electronics, Communications and Networks (CECNet). Xianning, China, 2011: 1953-1956.
  • 7GRISETTI G, STACHNISS C, BURGARD W. Improved techniques for grid mapping with Rao-Blackwellized particle filters[J]. Robotics, 2007, 23(1): 34-46.
  • 8GERKEY B. Gmapping.[EB/OL]. [2010-08-05]. http://wiki.ros.org/slam_gmapping.
  • 9GRISETTI G, STACHNISS C, BURGARD W. Improving grid-based slam with Rao-Blackwellized particle filters by adaptive proposals and selective resampling[C]//Proceedings of the 2005 IEEE International Conference on Robotics and Automation. Barcelona, Spain, 2005: 2432-2437.
  • 10DOUCET A, De FREITAS N, GORDON N. An introduction to sequential Monte Carlo methods[M]//DOUCET A, DE FREITAS N, GORDON N. Sequential Monte Carlo Methods in Practice. New York: Springer, 2001: 3-14.

二级参考文献12

  • 1LI Maohai,HONG Bingrong,LUO Ronghua.Mobile Robot Simultaneous Localization and Mapping Using Novel Rao-Blackwellised Particle Filter[J].Chinese Journal of Electronics,2007,16(1):34-39. 被引量:11
  • 2Smith R, Self M, Cheeseman E Estimating uncertain spatial relationships in robotics[M]//Autonomous robot vehicles. New York, NY, USA: Springer-Verlag, 1990: 167-193.
  • 3Australian Centre for Field Robotics. Source Code[DB/OL]. (2008-06-10) [2009-03-30]. http://www-personal.acfr.usyd. edu.au/tbailey/.
  • 4Julier S, Uhlmann J, Durrant-Whyte H E A new method for the nonlinear transformation of means and covariances in filters and estimators[J]. IEEE Transactions on Automatic Control, 2000, 45(3): 477-482.
  • 5Sunderhauf N, Lange S, Protzel E Using the unscented Kalman filter in mono-SLAM with inverse depth parameterization for autonomous airship control[C]//IEEE International Workshop on Safety, Security and Rescue Robotics. Piscataway, NJ, USA: IEEE, 2007: 1-6.
  • 6Julier S J. The scaled unscented transformation[C]//American Control Conference. Piscataway, NJ, USA: IEEE, 2002: 4555- 4559.
  • 7Wang X, Zhang H. A UPF-UKF framework for SLAM[C]// IEEE International Conference on Robotics and Automation. Piscataway, NJ, USA: IEEE, 2007: 1664-1669.
  • 8Kim C, Sakthivel R, Chung W K. Unscented FastSLAM: A robust and efficient solution to the SLAM problem[J]. IEEE Transactions on Robotics, 2008, 24(4): 808-820.
  • 9Shojaie K, Shahri A M. Iterated unscented SLAM algorithm for navigation of an autonomous mobile robot[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, NJ, USA: IEEE, 2008: 1582-1587.
  • 10Thrun S, Fox D, Burgard W. Monte Carlo localization with mixture proposal distribution[C]//National Conference on Artificial Intelligence. Menlo Park, CA, USA: AAAI, 2000: 859-865.

共引文献32

同被引文献75

引证文献9

二级引证文献59

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部