期刊文献+

进化算法的新界定

New Definition of Evolutionary Algorithm
下载PDF
导出
摘要 传统的进化算法在二十世纪六十年代提出,只包括遗传算法、遗传规划、进化策略和进化规划四种方法,随后出现的进化机制的方法没有包含在进化算法的分类之中,这一状况导致了对进化算法研究的局限性,因此需要对进化算法进行重新界定。把新产生的具有进化机制的算法纳入进化算法的范围之中,并使进化算法的内涵具有发展性,提出了新的进化算法的分类方法,新的进化算法的分类方法更加地科学、涵盖更广、有发展性和时效性。 The traditional evolutionary algorithm is proposed in the 1960s, which only includes four methods that are genetic algorithm, genetic programming, evolution strategies and evolutionary programming. Following algorithms with evo- lutionary mechanism are not included in the classification of the evolutionary algorithm which leads to the limitations of re- search of evolutionary algorithm, so it is necessary to redefine evolutionary algorithm. New algorithm is incorporated with evolutionary mechanism into the scope of evolutionary algorithm and make the connotation of evolutionary algorithm can be developed. The new classification of evolutionary algorithm is proposed to make the classification of evolutionary algorithm more scientific, wider in the scope, with property of development and effectiveness for period of time.
出处 《计算机与数字工程》 2015年第8期1387-1389,1542,共4页 Computer & Digital Engineering
关键词 进化算法 分类 智能计算 新界定 evolutionary algorithms, classification, intelligent computation, new definition
  • 相关文献

参考文献10

  • 1D. B. Fogel, L. J. Fogel, et al. Special Issue on Evo- lutionary Computation~-J~. IEEE Transactions on Neu- ral Networks, 1994,5 (1) : 1-148.
  • 2Holland J H. Genetic algorithms and classifier sys- tems: foundations and their applicationsEC~//Proeeed- ings of the Second International Conference on Genetic Algorithms. Hillsdale, NJ.- Lawrence Erlbaum Associ- ates, 1987 : 82-89.
  • 3Kloekgether J, Sehwdel H P. Two-phase nozzle and hollow core jet experiments ~Cff/Elliott D. (eds.) Proc llth Symp Engineering Aspects of Magneto hy- drodynamics. Pasadena CA.- California Institute of Technology, March 24-26,1970 : 141-148.
  • 4Fogd L J, Owens A J, Walsh M J. Artificial Intelli- gence Through Simulated Evolution[M~. Chichester: John Wiley, 1966. D. B. Fogel, T. Fukuda, L. Guan, et al. Special Is- sue on Computational Intelligence[C]//Proceedings of the IEEE, 1999,87(9) : 1415-1691.
  • 5朱高峰,伍铁斌,张艳蕾,成运,刘云连.一种求解约束优化问题的进化算法及其工程应用[J].计算机工程与科学,2013,35(7):95-101. 被引量:1
  • 6刘荣辉,郑建国.分区交叉差分进化算法及其约束优化[J].计算机科学,2012,39(2):283-287. 被引量:8
  • 7凌海风,周献中,江勋林,萧毅鸿.改进的约束多目标粒子群算法[J].计算机应用,2012,32(5):1320-1324. 被引量:24
  • 8张慧斌,王鸿斌,邸东泉.一种求解高维约束优化问题的γ-PSO算法[J].计算机工程与应用,2012,48(7):43-47. 被引量:2
  • 9Gexiang Zhang. Quantum-inspired evolutionary algo rithms= a survey and empirical study[J]. Journal of Heuristics, 2011,17(3) :303-351.
  • 10赵燕伟,彭典军,张景玲,吴斌.有能力约束车辆路径问题的量子进化算法[J].系统工程理论与实践,2009,29(2):159-166. 被引量:41

二级参考文献55

共引文献71

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部