期刊文献+

钢轨轨面堆焊温度场的数值模拟 被引量:5

Numerical Simulation of Temperature Field of Rail Steel Overlay Welding
下载PDF
导出
摘要 基于有限元软件SYSWELD对U71Mn钢轨轨面堆焊温度场进行数值模拟,研究了预热、后热、预热+后热三种焊接工艺对焊接冷却时间(t8/5)的影响,并对焊接热影响区的组织进行观察,最后对模拟结果进行了试验验证。结果表明:预热、后热、预热+后热三种焊接工艺均能延长t8/5,预热+后热的效果最佳,后热的效果优于预热的;预热+后热工艺是防止出现淬硬组织和冷裂纹行之有效的措施;采用模拟得到的焊接工艺可以达到消除马氏体组织的目的,试验结果验证了模拟结果的准确性。 Based on software SYSWELD, the temperature field of U71Mn rail steel overlay welding was simulated. The influence of preheating, post-heating and preheating + post-heating on the cooling time (t8/5) was studied , and the microstructure of heat effect zone was characterized to verify the correctness of the numerical simulation. The results showed that all the welding processes can prolong the cooling time. The effect of preheating +post-heating process was the best, and post-heating was better than preheating. Preheating + post-heating process was an effective measure to control the hardening structure and cold crack. The calculated process can be used to control the hardening structure, and the simulation results were verified by experiment.
出处 《机械工程材料》 CAS CSCD 北大核心 2015年第8期103-106,共4页 Materials For Mechanical Engineering
关键词 U71Mn钢轨 数值模拟 冷却时间(t8/5) 淬硬组织 U71Mn rail steel numerical simulation the cooling time (ts/s) hardening structure
  • 相关文献

参考文献10

二级参考文献26

共引文献54

同被引文献53

  • 1何小东,张建勋,裴怡,巩水利.钛合金薄板激光焊接和TIG焊接残余应力数值模拟[J].机械工程材料,2005,29(3):25-28. 被引量:18
  • 2金成,牛济泰,何世禹,陈永.铝合金平板钨极氩弧焊数值模拟与残余应力预测[J].机械工程材料,2007,31(3):58-59. 被引量:4
  • 3DONG P, HONG J K, BOUCHARD P J. Analysis of residual stresses at weld repairs[J]. International Journal of Pressure Vessels and Piping, 2005, 82(4): 258-269.
  • 4DENG D, MURAKAWA H, LIANG W. Numerical and experimental investigations on welding residual stress in multi pass butt-welded austenitic stainless steel pipe [J]. Computational Materials Science, 2008, 42(2): 234- 244.
  • 5ROSENTHAL D. The theory of moving sources of heat and its application to metal treatments[M]. [S.I. ] : ASME, 1946.
  • 6PAVELIC V, TANBAKUCHI R, UYEHARA O A, etal. Experimental and computed temperature histories in gas tungsten arc welding of thin plates[J]. Weld Journal, 1969, 48: 295-305.
  • 7GOLDAK J, CHAKRAVARTI A, BIBBY M. A new finite element model for welding heat sources [J]. Metallurgical Transactions B, 1984, 15(2): 299-305.
  • 8ZAIN-UL-ABDEIN M, NELIAS D, JULLIEN J F, etal. Thermo mechanical analysis of laser beam welding of thin plate with complex boundary conditions[J]. International Journal of Material Forming, 2008, 1: 1063-1066.
  • 9SOUL F A, ZHANG Y H. Numerical study on stress induced cambering distortion and its mitigation in welded titanium alloy sheet[J]. Science and Technology of Welding and Joining, 2006, 11(6): 688-693.
  • 10SHANMUGAM S, B K R, BUVANASHEKARAN G, et al. Numerical and experimental investigation of laser beam welding of AISI 304 stainless steel sheet[J]. Experimental Techniques, 2010 (5): 25-36.

引证文献5

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部