期刊文献+

一种改进的多流形判别分析方法在特征提取中的应用

APPLYING AN IMPROVED MULTI-MANIFOLD DISCRIMINANT ANALYSIS METHOD IN FEATURE EXTRACTION
下载PDF
导出
摘要 传统的多流形判别分析(MMDA)方法要求每类样本数目必须相同,这在实际中往往很难满足,因此限制了它的应用。针对此问题,提出一种改进的多流形判别分析(IMMDA)方法。该方法去除了MMDA中的限制条件,用类内图和类间图来描述类内紧凑度和类间离散度,类内图可以代表子流形信息,类间图可以代表多流形信息,从而更好地实现分类。在FERET、ORL人脸库及UCI数据集上的实验证明了该方法的有效性。相比其他几种子空间学习方法,该方法取得了更好的识别效果。 Traditional multi-manifold discriminant analysis (MMDA) usually requires the number of samples in each class must be the identical, which is hard to be satisfied in real-world applications, so its application is restrained. To tackle this problem, we propose an improved multi-manifold discriminant analysis (IMMDA) method. IMMDA removes the limitation in MMDA. It uses within-class graph and between-class graph to describe the within-class compactness and the between-class separability. In addition, the within-class graph can represent the sub-manifold information, while the between-class graph can represent the multi-manifold information, so that better classification is achieved. The experiments carried out on FERET, ORL and the UCI datasets proves the effectiveness of IMMDA. It is superior to other learning methods in terms of the recognition performance.
作者 张玉娇
出处 《计算机应用与软件》 CSCD 2015年第9期175-180,共6页 Computer Applications and Software
关键词 多流形学习 线性判别分析 局部保持投影 特征提取 Multi-manifold learning Linear discriminant analysis Locality preserving projection Feature extraction
  • 相关文献

参考文献23

  • 1Chu D, Goh S T, Hung Y S. Characterization of all solutions for under- sampled uncorrelated linear discriminant analysis problems [ J ]. SIAM J. Matrix Analysis and Applications ,2011,32 (3) :820- 844.
  • 2Friedman J H. Regularized discriminant analysis[ J]. Journal of the A- merican Statistical Association, 1989,84(405 ) : 165 - 175.
  • 3Li M ,Yuan B. 2D-LDA:a novel statistical linear discriminant analysis for image matrix [ J ]. Pattern Recognition Letters, 2005,26 ( 5 ) : 527 - 532.
  • 4Ye J P, Xiong T. Computational and theoretical analysis of null space and orthogonal linear discriminant analysis [ J ]. Journal of Machine Learning Research ,2006,7 : 1183 - 1204.
  • 5Yu H, Yang J. A direct LDA algorithm for high-dimensional data with application to face recognition [ J ]. Pattern Recognition, 2001,34 ( 11 ) : 2067 - 2070.
  • 6Wan M H, Lai Z H, Jin Z. Feature extraction using two-dimensional lo- cal graph embedding based on maximum margin criterion [ J ]. Applied Mathematics and Computation,2011,217 (23) :9659 - 9668.
  • 7黄运娟,李凡长.等谱流形学习算法[J].软件学报,2013,24(11):2656-2666. 被引量:9
  • 8Zhang Z Y, Wang J, Zha H Y. Adaptive manifold learning [ J ]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2012,34 (2) :253 - 265.
  • 9Xiao R, Zhao Q J, Zhtmg D. Facial expression recognition on multiple manifolds[J]. Pattern Recognition,2011,44( 1 ) :107 - 116.
  • 10Tenenbaum J B, Silva V D, Langford J C. A global geometric framework for nonlinear dimensionality reduction[ J ]. Science ,2000,290 (5500) : 2319 -2323.

二级参考文献46

  • 1Seung HS, Lee DD. The manifold ways of perception. Science, 2000,290(5500):2268-2269. [doi: 10.1126/science.290.5500.2268].
  • 2Tenenbaum J, Von De Silva, Langford J. A global geometric framework for nonlinear dimension reduction. Science, 2000, 290(5500):2319-2323. [doi: 10.1126/science.290.5500.2319].
  • 3Roweis S, Saul L. Nonlinear dimensionality reduction by locally linear embedding. Science, 2000,290(5500):2323-2326. [doi: 10. 1126/science.290.5500.2323].
  • 4Belkin M, Niyogi P. Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation, 2003,15(6): 1373-1396. [doi: 10.1162/089976603321780317].
  • 5Zhang Z, Zha H. Principal manifolds and nonlinear dimensionality reduction via tangent space alignment. SIAM Journal of Scientific Computing, 2004,26(1 ):313-338. [doi: 10.1137/SI064827502419154].
  • 6Bengio Y, Paiement JF, Vincent P, Delalleau O, Le Roux N, Ouimet M. Out-of-Sample extensions for LLE, isomap, MDS, eigenmaps, and spectral clustering. In: Proc. of the Advances in Neural Information Processing Systemsl6 (NIPS 2003). 2004. 177-184.
  • 7He XF, Niyogi P. Locality preserving projections. In: Proc. of the Neural Information Processing Systems (NIPS). 2003.
  • 8He XF, Cai D, Yan SC, Zhang HJ. Neighborhood preserving embedding. In: Proc. of the IEEE Int’l Conf. on Computer Vision (ICCV). 2005. [doi: 10.1109/ICCV.2005.167].
  • 9Fu Y, Huang TS. Graph embedded analysis for head pose estimation. In: Proc. of the IEEE Int’l Conf. on Automatic Face and Gesture Recognition. 2006. [doi: 10.1109/FGR.2006.60].
  • 10Li FZ, Zhang L, Yang JW, Qian XP, Wang BJ, He SP. Lie Group Machine Learning. Hefei: University of Science and Technology of China Press, 2013 (in Chinese).

共引文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部