期刊文献+

GPU上高光谱快速ICA降维并行算法 被引量:1

A parallel algorithm of Fast ICA dimensionality reduction for hyperspectral image on GPU
下载PDF
导出
摘要 高光谱影像降维快速独立成分分析过程包含大规模矩阵运算和大量迭代计算。通过分析算法热点,设计协方差矩阵计算、白化处理、ICA迭代和Ic变换等关键热点的图像处理单元映射方案,提出并实现一种G-FastICA并行算法,并基于GPU架构研究算法优化策略。实验结果显示:在处理高光谱影像降维时,CPU/GPU异构系统能获得比CPU更高效的性能,G—FastICA算法比串行最高可获得72倍加速比,比16核CPU并行处理快4~6.5倍。 Fast independent component analysis dimensionality reduction for hyperspectral image needs a large amount of matrix and iterative computation. By analyzing hotspots of the fast independent component analysis algorithm, such as covariance matrix calculation, white processing, ICA iteration and IC transformation, a GPU-oriented mapping scheme and the optimization strategy based on GPU-oriented algorithm on memory accessing and computation-communication overlapping were proposed. The performance impact of thread-block size was also investigated. Experimental results show that better performance was obtained when dealing with the hyperspectral image dimensionality reduction problem: the GPU-oriented fast independent component analysis algorithm can reach a speedup of 72 times than the sequential code on CPU, and it runs 4 -6. 5 times faster than the case when using a 16-core CPU.
出处 《国防科技大学学报》 EI CAS CSCD 北大核心 2015年第4期65-70,共6页 Journal of National University of Defense Technology
基金 国家自然科学基金资助项目(61272146 41375113 41305101)
关键词 图像处理单元 高光谱影像降维 快速独立成分分析 并行算法 性能优化 graphic processing unit hyperspectral image dimensionality reduction fast independent component analysis parallel algorithm performance optimization
  • 相关文献

参考文献17

  • 1Green R O,Eastwood M L,Sarture C M,et al.Imaging spectroscopy and the airborne visible/infrared imaging spectrometer(AVIRIS)[J].Remote Sensing Environ,1998,65(3):227-248.
  • 2Green A A,Berman M,Switzer P,et al.A transformation for ordering multispectral data in terms of image quality with implications for noise removal[J]. IEEE Transaction on Geoscience and Remote Sensing,2000,26(1):65-74.
  • 3Kaama A,Zemcik P,KMviSinen H,et al.Compression of multispectral remote sensing images using clustering and spectral reduction[J].IEEE Transaction on Science Remote Sensing,2000,38(2):1073-1082.
  • 4Scott D,Thompson J.Probability density estimation in higher dimensions[C]// Proceedings of the 15th Symposium on the Interface Computer Science and Statistics,1983:173-179.
  • 5Jolliffe I T.Principal componnent analvsis[M].USA:Sprinner-Verlan,1986.
  • 6Hyvarinen A,Oja E.Independent component analysis:algorithm and applications[J].Neural Networks,2000,13(4-5):411-430.
  • 7Tenenbaum J B,De Silva V,Langford J C.A global geometric framework for nonlinear dimensionality reduction[J].Science,2000,290(5500):2319-2323.
  • 8Roweis S T,Saul L K.Nonlinear dimensionality reduction by locally linear embedding[J].Science,2000,290(5500):2323-2326.
  • 9TOP500.TOP500 supercomputer sites[EB/OL].(2012-11)[2014-09-26]http://www.top500.org.
  • 10Valencia D,Lastovetsky A,O,Flynn M,et al.Parallel processing of remotely sensed hyperspectral images on heterogeneous networks of workstations using heteroMPI[J].International Journal of High Performance Computing Applications,2008,22(4).386-407.

同被引文献3

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部