期刊文献+

关于广义非凸变分不等式问题投影算法的注记 被引量:2

Projection algorithms for solving generalized nonconvex variational inequalities
原文传递
导出
摘要 引入和研究了一类新的广义非凸变分不等式,利用投影技巧,给出了一个求解此类非凸变分不等式的迭代算法,最后证明了该算法在适当的条件下收敛.所得的结果修改了最近一些文献不足的结论,也对先前一些重要结论做了推广改进. We introduce and study a new generalized nonconvex variational inequalities.By using the projection thchnique, we suggest and analyze a new iterative method for this generalized nonconvex variational inequalities.The new iterative method converge under certain mild conditions.As a consequence,the algorithm and results presented in the paper overcome deficient algorithms and results existing in the literature.Our results can also be viewed as a novel and important extension and improvement of the previously known results.
出处 《云南大学学报(自然科学版)》 CAS CSCD 北大核心 2015年第5期644-648,共5页 Journal of Yunnan University(Natural Sciences Edition)
基金 重庆市自然科学基金(CSTC2012jj A00039) 重庆市教委科技研究项目(KJ130712 KJ1400614)
关键词 非凸变分不等式 近似正规锥 强单调 投影技巧 nonconvex variational inequalities uniformly prox-regular sets strongly monotonicity projection technique
  • 相关文献

参考文献3

二级参考文献26

  • 1Chang S S, Joseph Lee H W,Chan C K. Generalized system for relaxed cocoercive variational inequalities in Hilbert spaces [J]. Appl. Math. Lett, 2007,20 : 329-334.
  • 2Huang Zhenyu,Noor M A. An explicit projection method for a system of nonlinear variational inequalities with different (γ,r)-cocoercive mappings [J]. Applied Mathematics and Computation, 2007,191(2): 356-361.
  • 3Verma R U. General convergence analysis for two-step projection methods and applications to variational problems [J]. Appl. Math. Lett, 2005,18 : 1286-1292.
  • 4Verma R U. Generalized System ior Relaxed Cocoercive Variational Inequalities and Projection Methods [J]. Journal of Optimization Theory and Applications, 2004,121 (1) : 203-210.
  • 5Ding X P,Luo C L. Perturbed Proximal point algorithms for generalized quasi-variation-like inclusions [J].J. Comput. Appl. Math, 2000,113 : 153-165.
  • 6R. U. Verma, General convergence analysis for two-step proJ ection methods and application to variational problems, Appl. Math. Lett., 2005, 18: 1286-1292.
  • 7S. S. Chang, H. W. J . Lee, and C. K. Chan, Generalized system for relaxed cocoercive variational inequalities in Hilbert spaces, Appl. Math. Lett., 2007, 20: 329-334.
  • 8Z. Y. Huang and M. A. Noor, An explicit proJ ection method for a system of nonlinear variational inequalities with different (-y, r)-cocoercive mappings, Applied Mathematics and Computation, 2007, 190: 356-361.
  • 9M. A. Noor and K. I. Noor, ProJ ection algorithms for solving a system of general variational inequalities, Nonlinear Analysis, 2009, 70: 2700-2706.
  • 10X. P. Ding and C. L. Luo, Perturbed Proximal point algorithms for general quasi-variational-like inclusions, J . Comput. Appl. Math., 2000, 113: 153-165.

共引文献10

同被引文献13

  • 1CIORANESCU I. Geometry of banach spaces, duality mappings and nonlinear problems [ M ]. Dordrecht : Kluwer Academic, 1990.
  • 2MATSUSHITA S,TAKAHASHI W.A strong convergence theorem for relatively nonexpansive mappings in Banach spaces [ J ]. Journal of Approximation Theory, 2005,134 (2) : 257-266.
  • 3SHEHU Y.Hybrid iterative scheme for fixed point problem,infinite systems of equilibrium and variational inequality problems [ J ]. Computers & Mathematics with Applications, 2012,63 (6) : 1 089-1 103.
  • 4QIN X, CHO Y J, KANG S M.Convergence theorems of common elements for equilibrium problems and fixed point problems in Banach spaces [ J ] .Journal of Computational and Applied Mathematics, 2009,225 ( 1 ) : 20-30.
  • 5CHANG S S, CHAN C K,JOSEPH L H W.Modified block iterative algorithm for quasi-~0-asymptotically nonexpansive map- pings and equilibrium problem in banach spaces [ J ].Applied Mathematics and Computation, 2011,217 ( 18 ) : 7 520-7 530.
  • 6ZEGEYE H ,SHAHZAD N.A hybrid scheme for finite families of equilibrium, variational inequality and fixed point problems [ J ]. Nonlinear Analysis, 2011,71 ( 1 ) : 263-272.
  • 7LI X, HUANG N,O'REGAN D.Strong convergence theorems for relatively nonexpansive mappings in Banach spaces with ap- plications [J] .Computers & Mathematics with Applications,2010,60(5) :1 322-1 331.
  • 8CHANG S S ,JOSEPH LEE H W, CHAN C K, et al.A modified Halpern-type iteration algorithm for totally quasi-~0-asymptot- ically nonexpansive mappings with applications [ J ].Applied Mathematics and Computation, 2012,218 ( 11 ) : 6 489-6 497.
  • 9TAKAHASHI W,ZEMBAYASHI K.Strong convergence theorem by a new hybrid method for equilibrium problems and rela- tively nonexpansive mappings [ J ].Fixed Point Theory and Applications, 2008,2008 ( 1 ) : 1-11.
  • 10DEIMLING K. Nonlinear functional analysis [ M ]. Berlin: Springer-Verlag, 1985.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部