期刊文献+

基于动态学习策略的群集蜘蛛优化算法 被引量:21

Social spider optimization with dynamic learning strategy
原文传递
导出
摘要 为了提高群集蜘蛛优化(SSO)算法的性能,提出一种基于动态学习策略的群集蜘蛛优化(DSSO)算法.该算法通过群体协作过程中学习因子的动态选择,平衡算法的搜索能力和勘探能力;采用随机交叉策略和云模型改进协作过程个体更新方式,在维持种群多样性的同时尽量提高收敛速度.基于标准测试函数的仿真实验表明,DSSO算法可有效避免早熟收敛,在收敛速度和收敛精度上较标准SSO算法和其余4种较具代表性的优化算法均有显著提高. In order to improve the performance of social spider optimization(SSO) algorithm,a social spider optimization algorithm with the dynamic learning strategy(DSSO) is proposed.In this algorithm,a dynamic selection mechanism for the learning factor in population cooperation is applied to balance solution accuracy and search speed.A manner to update individual combining randomized crossover strategy and cloud theory is proposed to improve the collaboration manner,which can maintain the diversity of the population as much as possible and improve searching speed.Experimental results on benchmark functions show that the DSSO algorithm improves convergence property and robustness compared with the representative four algorithms.
出处 《控制与决策》 EI CSCD 北大核心 2015年第9期1575-1582,共8页 Control and Decision
基金 国家自然科学基金项目(61175126) 东北电力大学博士科研启动基金项目(BSJXM-2013-20)
关键词 群集蜘蛛优化算法 函数优化 动态学习 social spider optimization algorithm function optimization dynamic learning strategy
  • 相关文献

参考文献14

  • 1Erik C, Miguel C, Daniel Z, et al. A swarm optimization algorithm inspired in the behavior of the social-spider[J]. Expert Systems with Applications, 2013, 40(1): 6374- 6384.
  • 2Erik C, Miguel Cienfuegos. A new algorithm inspired in the behavior of social-spider for constrained optimization[J]. Expert Systems with Applications, 2014, 41(1): 412-425.
  • 3Karaboga D. An idea based on bee swarm for numerical optimization[R]. Report-TR06. Erciyes University, Engineering Faculty, Computer Engineering Department, 2005.
  • 4张光卫,何锐,刘禹,李德毅,陈桂生.基于云模型的进化算法[J].计算机学报,2008,31(7):1082-1091. 被引量:127
  • 5Karaboga D, Basturk B. On the performance of artificial bee colony(ABC) algorithm[J]. Applied Soft Computing, 2008, 8(1): 687-697.
  • 6Lou Y, Li J L. A differential evolution algorithm based on ordering of individuals[C]. The 2nd Int Conf on Industrial Mechatronics and Automation. Wuhan: IEEE Press, 2010: 105-108.
  • 7蔡之华,龚文引,LING Charles-X.基于进化规划的新型生物地理学优化算法研究[J].系统工程理论与实践,2010,30(6):1106-1112. 被引量:26
  • 8Saucer T W, Sih V. Optimizing nanophotonic cavity designs with the gravitational search algorithm[J]. Optics Express, 2013, 21(18): 20831-20836.
  • 9Tsai H C, Tyan Y Y, Wu Y W, et al. Gravitational particle swarm[J]. Applied Mathematics and Computation, 2013, 219(17): 9106-9117.
  • 10韩俊英,刘成忠,王联国.动态双子群协同进化果蝇优化算法[J].模式识别与人工智能,2013,26(11):1057-1067. 被引量:39

二级参考文献44

共引文献214

同被引文献151

引证文献21

二级引证文献73

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部