期刊文献+

基于量子优化的云服务器负载均衡算法研究 被引量:4

Cloud server load balancing algorithm based on quantum optimization
下载PDF
导出
摘要 为了实现云计算系统的负载均衡,最大化系统的吞吐量,提出了一种基于量子优化的云服务器负载均衡算法。该算法将量子优化的方法应用到粒子聚类中,提出了基于量子理论的无监督的聚类方法,类似于量子与势能变化的原理,通过粒子分布的势能函数来确定聚类中心。提出了服务器的任务调度策略,分析了系统处于最佳状态时最短的任务处理时间和最大联合吞吐量。最后结合量子优化原理实现了服务器的负载均衡。实验仿真结果表明,在提升服务器的负载均衡率和吞吐量优化上,该算法都具有较好的性能。 In order to achieve load balancing cloud computing system to maximize system throughput,this paper proposed cloud server load balancing algorithm based on quantum optimization. It applied the algorithm optimization method to quantum particle clustering,and proposed clustering method based on the principles of quantum theory unsupervised,to determine the cluster centers by the potential energy function,which was similar quantum particle distribution and the potential change. And proposing scheduling policy server,the task of analyzing the shortest processing time when the system was in the best condition and the maximum combined throughput. Finally,the principle of quantum optimization to be achieve load balancing server. Simulation results show that the upgrade server load balancing and throughput optimization,the algorithm has better performance.
出处 《计算机应用研究》 CSCD 北大核心 2015年第10期3128-3130,共3页 Application Research of Computers
基金 国家自然科学基金资助项目(U1204613)
关键词 云服务器 量子优化 负载均衡 任务调度策略 cloud server quantum optimization load balancing task scheduling strategy
  • 相关文献

参考文献16

  • 1Arora V,Tyagi S S. Performance evaluation of load balancing policiesacross virtual machines in a data center [ C ] //Proc of InternationalConference on Optimization, Reliabilty, and Infonnation Technology.[S. I. ] :IEEE Press,2014:384-387.
  • 2Goyal A. A study of load balancing in cloud computing using soft com-puting techniques[J]. International Journal of Computer Applica-tions ,2014,92 (9) :33-39.
  • 3Zhang Tao. Design and application of continuing education networktraining platform based on cloud computing[ C ] //Proc of InternationalConference on Cybernetics and Informatics. New York: Springer,2014:1203-1210.
  • 4Luo Jianying,Rao Lei,Liu Xue. Temporal load balancing with servicedelay guarantees for data center energy cost optimization [ J ]. IEEETrans on Parallel and Distributed Systems,2014,25(3) :775-784.
  • 5Ramezani F,Lu J,Hussain F K. Task-based system load balancing incloud computing using particle swarm optimization [ J ]. InternationalJournal of Parallel Programming,2014,42(5) :739-754.
  • 6刘志飘,孙其博,王尚广,邹华,杨放春.成本感知的云服务请求调度[J].北京邮电大学学报,2013,36(1):86-90. 被引量:2
  • 7王伟,黄翔,张文博,魏峻,钟华,黄涛.多租户Web应用的CPU资源动态评估方法[J].计算机学报,2011,34(12):2292-2304. 被引量:5
  • 8魏亮,黄韬,陈建亚,刘韵洁.基于工作负载预测的虚拟机整合算法[J].电子与信息学报,2013,35(6):1271-1276. 被引量:26
  • 9王德文,刘杨.一种电力云数据中心的任务调度策略[J].电力系统自动化,2014,38(8):61-66. 被引量:25
  • 10Gaochao Xu,Junjie Pang,Xiaodong Fu.A Load Balancing Model Based on Cloud Partitioning for the Public Cloud[J].Tsinghua Science and Technology,2013,18(1):34-39. 被引量:8

二级参考文献62

  • 1Binder W, Hulaas J. A portable CPU-management frame- work for Java. IEEE Internet Computing, 2004, 8(5) : 74-83.
  • 2Hulaas J, Binder W. Program transformations for portable CPU accounting and control in Java//Proceedings of ACM SIGPLAN Symposium on Partial Evaluation & Program Manipulation. Verona, Italy, 2004:169-177.
  • 3Zhang Q, Cherkasova L, Mathews G, Greene W, Smirni E. R capriccio: A capacity planning and anomaly detection tool for enterprise services with live workloads//Proceedings of the Middleware. Newport Beach, CA, 2007:244-265.
  • 4Cherkasova L, Ozonat K. Automated anomaly detection and performance modeling of enterprise applications. ACM Transactions on Computer Systems, 2009, 27(3) : 1-32.
  • 5Kalman R E. A new approach to linear filtering and prediction problems. Transactions of the ASME Journal of Basic Engineering, 1960, 82(D):35-45.
  • 6Lazowska E D, Zahorjan J, Graham G S, Sevcik K C. Quan- Titative System Performance: Computer System Analysis Using Queueing Network Models. Upper Saddle River: Prentice-Hall, Inc. , 1984.
  • 7Jazwinski A H. Stochastic Processes and Filtering Theory. New York: Academic Press, 1970.
  • 8Wang W, Zhang W B, Wei J, Huang T. A QoS-enabled WorkManager model for Web application servers//Proceedings of the 7th International Conference of Quality Software. Portland, Oregon, USA, 2007:40-49.
  • 9Gunther N J. Mind Your Knees and Queues. CMG Measure IT Issue 7.08.
  • 10Barham P, Donnelly A, Isaacs R, Mortier R. Using magpie for request extraction and workload modeling//Proceedings of the 6th Symposium on Operating Systems Design and Im plementation (OSDI'04). Berkeley, CA, USA, 2004: 18-18.

共引文献61

同被引文献51

引证文献4

二级引证文献76

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部