期刊文献+

基于视觉显著性的非监督图像分割 被引量:11

Unsupervised Image Segmentation Based on Saliency Detection
下载PDF
导出
摘要 交互式的图像分割算法需要用户输入先验信息,从而增加了算法的时间复杂度和用户的负担。提出了基于视觉显著性的非监督图像分割算法。该算法首先通过均值漂移算法先对图像进行预处理,将图像过分割成互不重叠的小区域。这些区域采用区域邻接图表示,当两个区域相邻时对应的节点之间存在边。其次,通过计算各个区域的颜色相异性和纹理一致性,得到相邻区域之间的合并概率。再次,根据区域的颜色和空间位置信息,定义每一个区域的显著性指标,选择最大显著性指标对应的区域作为目标种子区域,图像边缘区域中显著性指标最小的区域作为背景种子区域。最后,基于最大相似性合并策略,对与种子区域相邻的且合并概率最大的区域进行合并。实验表明,所提算法不需要先验信息,且可以得到较好的分割效果;与非监督图像分割算法相比,所提算法可以避免过分割。 Interactive image segmentation needs the user interactions which increases the time complexity and the user's burden. We proposed an unsupervised image segmentation algorithm based on visual saliency. First, mean shift (MS) algorithm is used to obtain initial segmentation without overlapping. The regions generated by MS are represented by a region adjacency graph (RAG) and an edge exists only if two regions are adjacent. Second, the color dissimilarity and texture consistency between the regions are computed, which are adjacent, as the weight of the edge in our RAG. Then, the proposed algorithm defines the saliency index (SI) according to the color and spatial information of each region gene- rated by MS algorithm. The region with maximal SI is defined as the seed of object, and the region with minimal SI in the boundary is defined as the seed of background. Finally, region merging is performed according to the strategy of maximize similarity around the seed of object and background. The results show that the proposed algorithm obtains better segment results without any interactive information and avoids oversegmentation compared with other unsupervised image segmentation.
出处 《计算机科学》 CSCD 北大核心 2015年第8期52-55,64,共5页 Computer Science
基金 江苏省高校自然科学研究面上项目(14KJB520006)资助
关键词 非监督图像分割 显著性检测 均值漂移 Unsupervised image segmentation,Saliency detection, Mean shift
  • 相关文献

参考文献16

  • 1Boykov Y, Kolmogorov V. Computing geodesics and minimal surfaces via graph cuts[C] // Proceedings of Seventh IEEE In- ternational Conference on Computer Vision (ICCV). Nice, France, 2003,1 : 26-33.
  • 2Rother C, Kolmogorov V, Blake A. Grab cut interactive fore- ground extraction using iterated graph cuts[J]. ACM Transac- tions on Graphics,2004,23(3) :309-314.
  • 3Cheng Y Z. Mean shift, mode seeking, and clustering [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1995,17(8) .. 790-799.
  • 4Nock R, Nielsen F. Statistic region merging[J] IEEE Transac- tions on Pattern Analysis and Machine Intelligence, 2004, 26 (11):1452-1458.
  • 5Calderero F, Marques F. Region merging techniques using infor- mation theory statistical measures[J]. IEEE Transactions on Image Processing,2010,19(6) : 1567-1586.
  • 6Calderero F, Marques F. General region merging approaches based on information theory statistical measures[-C]/Procee- dings of IEEE International Conference in Image Processing. San Diego, 2008 : 3016-3019.
  • 7Wan T, Canagarajah N, Achim A. Statistical multiscale image segmentation via alpha-stable modeling [C] //Proceedings of IEEE International Conference in Image Processing. Texas, 2007 .. 357-360.
  • 8Haris K, Estradiadis S N, Maglaveras N, et al. Hybrid image segmentation using watersheds and fast region merging [J]. IEEE Transactions on Image Processing, 1998, 7 ( 12 ) .. 1684- 1699.
  • 9Liu H,Guo Q, Xu M, et ah Fast image segmentation using re- gion merging with a k-nearest neighbor graph[C]//Proceedings of IEEE International Conference Cybernetics and Intelligent Systems. Chengdu, 2008 .. 179-184.
  • 10Shu Y, Bilodeau G A, Cheriet F. Segmentation of laparoscopic images : Integrating graph-based segmentation and multistage re- gion merging[C]ffProceedings of the 2nd Canadian Conference on Computer and Robot Vision. Regina, 2005:429-436.

同被引文献65

  • 1杨刚,孙汉秋,王文成,吴恩华.采用非均匀纹理层的短毛实时绘制[J].计算机辅助设计与图形学学报,2007,19(4):430-435. 被引量:10
  • 2Perbet F,Cani M P.Animating prairies in real-time[C]//Proceedings of the Symposium on Interactive 3D Graphics.New York: ACM Press,2001:103-110.
  • 3Bakay B M.Animating and lighting grass in real-time[D].Vancouver:University of British Columbia,2002.
  • 4Eihhauser W, Konig P. Does luminance-constrast contribute to a saliency map for overt visual attention? European Journal of Neuroscience, 2003,17" 1089-1097.
  • 5Chen T, Cheng MM, Tan P, et al. Sketch2photo: Intemet image montage. ACM Trans. on Graph, 2009, 28(5): 1241- 1250.
  • 6Liu T, Yuan Z, Sun J, et al. Learning to detect a salient object. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2011, 33(2): 353-367.
  • 7Yan Q, Xu L, Shi JP, et al. Hierarchical Saliency Detection. IEEE Conference on Computer Vision and Pattern Recognition, 2013.
  • 8Itti L, Koch C, Niebur E. A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1998, 20(11): 1254- 1259.
  • 9Harel J, Koch C, Perona P. Graph-based visual saliency. Conference on Neural Information Processing Systems,2006:545-552.
  • 10Achanta R, Estrada F, Wils P, et al. Salient region detection and segmentation. International Conference on Virtual Storytelling. 2008.66-75.

引证文献11

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部