期刊文献+

基于小波变换的无参考立体图像质量评价 被引量:2

No-reference Stereoscopic Image Quality Assessment Based on Wavelet Transform
下载PDF
导出
摘要 立体图像质量评价是图像处理领域中一项重要技术,现有的2D图像质量评价方法并不能很好地应用于立体图像。为了更好地评价立体图像质量,提出了一种基于小波变换提取左右图像及其合成图像特征的无参考立体图像质量评价方法。该方法首先通过对失真的立体左右图像计算合成图像;再通过小波分解提取左右图像及其合成图像的小波系数,获取小波子带能量作为立体图像质量感知特征;最后通过支持向量回归建立立体图像特征与主观得分的关系模型,来预测和得到立体图像质量的客观评价得分。实验结果表明,与现有无参考立体图像质量评价方法相比较,该客观评价模型可以获得更好的主观感知一致性,更加符合人眼视觉系统。 Stereoscopic image quality assessment is an important field of image processing, and existing no-reference quality assessment method of 2D image cannot be well used in stereoscopic images. To evaluate the stereoscopic image quality, we presented a no-reference stereoscopic image quality assessment method based on wavelet transform. Firstly, the "Cyclopean" images are gained using Gabor and SSIM algorithm based on the left and right stereoscopic images. And then the sub-band energy of the left and right stereoscopic images and the "Cyclopean" image is calculated by wavelet decomposition. At last the relationship model between perceptual features of 3D image and subjective scores is built by support vector regression(SVR). Experimental results show that our method is better consistent with subjec- tive assessment,and is more accord with human visual system.
出处 《计算机科学》 CSCD 北大核心 2015年第9期282-284,308,共4页 Computer Science
基金 国家自然科学基金(61170120) 教育部新世纪人才计划(NCET-12-0881)资助
关键词 无参考立体图像质量评价 小波变换 合成图像 支持向量回归 No-reference stereoscopic image quality assessment, Wavelet transform, "Cyclopean" image, Support vectorregression
  • 相关文献

参考文献16

  • 1Wang Z,Simoncelli E P,Bovik A C.Multi-scale structural similarity for image quality assessment[C]∥IEEE Asilomar Confe-rence on Signals,Systems and Computers.Pacific Grove,CA,2003:1398-1402.
  • 2Sheikh H R,Bovik A C.Image information and visual quality[J].IEEE Transactions on Image Processing,2006,15(2):430-444.
  • 3You J,Xing L,Perkis A,et al.Perceptual quality assessment for stereoscopic images based on 2D image quality metrics and disparity analysis[C]∥International workshop on video processing and quality metrics.Scottsdale,Arizona,USA,2010.
  • 4Xing L,You J,Ebrahimi T,et al.A perceptual quality metric for stereoscopic crosstalk perception[C]∥IEEE International Conference on Image Processing.Hong Kong,China,2010:4033-4036.
  • 5Rittermann M.A proposal for the quality assessment of 3D videoobjects[C]∥International Workshop on Image Analysis for Multimedia Interactive Services.Lisboa,Portugal,2004.
  • 6Akhter R,Sazzad Z M P,Horita Y,et al.No-reference stereoscopic image quality assessment[C]∥Proceedings of SPIE.San Jose,California,USA,2010:17-21.
  • 7Shao F,Lin W S,Gu S B,et al.Perceptual full-reference quality assessment of stereoscopic images by con-sidering binocular vi-sual characteristics[J].IEEE Trans.Image Process,2013,22(5):1940-1953.
  • 8Perera G C V,De S V,Kondoz A M.Dogan An improved model of binocular energy calculation for full-reference stereoscopic ima-ge quality assessment[C]∥IEEE International Conference on Acoustic,Speech and Signal Processing.2014:594-598.
  • 9Gorley P,Holliman N.Stereoscopic image quality metrics andcompression[C]∥Proceedings of SPIE.San Jose,California,USA,2008:1-11.
  • 10Gu K,Zhai G,Yang X.No-Reference Stereoscopic IQA Ap-proach:From Nonlinear Effect to Parallax Compensation[J].Journal of Electrical and Computer Engineering,2012.

二级参考文献12

  • 1Crete F, Dolmiere T, Ladret P, et al. The blur effect : perception and estimation with a new no-reference perceptual blur metric [ C ]//Human Visual and Electrenic Imaging XII. San Jose, USA: Proceeding of SPIE ,2007:64920I.
  • 2Marziliano P, Dufaux F, Winkler S, et al. A no-reference perceptual blur metric [ C ]// Proceeding of IEEE International Conference on Image Processing. Genimedia SA, Switzerland: IEEE Computer Society,2002:57-60.
  • 3Wang Z,Sheik H R,Bovik A C. No-reference perceptual quality assessment of jpeg compressed images[ C ]//Proceeding of IEEE International Conference on Image Processing. New York, USA: IEEE Computer Society ,2002:447-480.
  • 4Pan F, Lin X, Rahardja S, et al. Using edge direction information for measuring blocking artifacts of images [ J ]. Multidimensional Systems and Signal Processing, 2007,18 (4) : 297 -308.
  • 5Charrier C, Lebrun G, Lezoray O. A machine learning-based color image quality metric [ C ]//Proceedings of Third European Conference on Color in Graphics. Leeds, UK: Imaging And Vision, 2006 : 251-256.
  • 6Babu R V, Perkis A. An hvs-base no-reference perceptual quality assessment of jpeg coded images using neural networks [ C ]// Proceedings of IEEE International Conference on Image Processing. Genoa, Italy: IEEE Computer Society ,2005:433-439.
  • 7Lu W, Zeng K, Tao D C, et al. No-reference image quality assessment in contourlet domain [ J]. Neurocomputing, 2010, 73(4-6) :784-794.
  • 8Moorthy K A, Bovik A C. A two-step framework for constructing blind image quality indices [ J ]. IEEE Signal Processing Letters, 2010,17(5) :513-516.
  • 9Schaaf A, Hateren J H. Modeling the power spectra of natural images : statistics and information [ J ]. Vision Research, 1996, 36(17) :2759-2770.
  • 10Sheikh H R, Wang Z. Live Image Quality Assessment Database [ EB/OL ] (2005) [ 2010-06-14 ]. http :// live. ece. utexas, edu/ research/quality.

共引文献21

同被引文献6

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部