期刊文献+

基于一类新结点集的Newman型有理插值算子 被引量:4

Newman-type Rational Interpolation Operator Based on a New Type Set of Nodes
原文传递
导出
摘要 本文构造了一类分段加密的新节点集,将其对应的Newman型有理插值算子逼近非光滑函数|x|的上界精确到e-4/((3+ε)(1/2))n(1/2),其中ε>0仅与n有关,并随n增大无限接近于0. We consider Newman-type rational interpolation to |x| induced by a new set of nodes, whose density increases piecewise. And we show that this procedure improves the quality of approximation. Namely, we prove that in this case the upper bound of approximation is e^-4/√3+ε√n , where ε only depends on n and is infinitesimal when n tends to infinity.
作者 詹倩 许树声
出处 《数学进展》 CSCD 北大核心 2015年第5期757-764,共8页 Advances in Mathematics(China)
基金 安徽省教育厅自然科学研究项目(No.KJ2011Z106) 安徽理工大学青年教师科学研究基金资助
关键词 Newman型有理算子 逼近 插值 节点集 Newman-type rational operator approximation interpolation set of nodes
  • 相关文献

参考文献2

二级参考文献13

  • 1[1]NEWMAN D J. Rational approximation to |x| [J]. Michigan Math J, 1964(11):11-14.
  • 2[2]XIE T F, ZHOU S P. Approximation theory of real function[M]. Hangzhou Univ Press, Hangzhou, China,1998.
  • 3[3]XIE T F, ZHOU S P. The asgmptotic property of approximation to |x| by Newman rational operators [J]. Acta Math Hungar, 2004(103,4) :313-319.
  • 4[4]BALAZS K, KILGORE. Discussion on simultaneous approximalion of derivatives by Lagrcunge interpolation[J].Numer Functo Optim, 1990(11) :225-237.
  • 5[5]PETRUSHEV P P, POPOV V A. Rational approximation of real functions[M]. Cambridge Univ,Press,Cambridge,1987.
  • 6S Bernstein. Sur la meilleure approximation de I xlpar des polyn6mes de degr donn-6s[ J]. Acta Math, 1913 (37) :1 -57.
  • 7D J Newman. Rational approximation to I xl [ J]. Michigan Math. J. , 1964( 11 ) : 11 - 14.
  • 8H Werner. Rationale Interpolation yon in aquidistanten Punkten [ J]. Math. Z. , 1982 (180) :85 -118.
  • 9L Brutman and E B Saff. Rational interpolation to Ixl at the Chebyshev nodes [J]. Bull. Austral. Math. Soc. , 1997(56) :81 -86.
  • 10L Brutman. On Rational Interpolation to Ixl at adjusted Chebyshev nodes [J]. J. Approx. Theory, 1998(95) :146 -152.

共引文献2

同被引文献17

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部