摘要
本文构造了一类分段加密的新节点集,将其对应的Newman型有理插值算子逼近非光滑函数|x|的上界精确到e-4/((3+ε)(1/2))n(1/2),其中ε>0仅与n有关,并随n增大无限接近于0.
We consider Newman-type rational interpolation to |x| induced by a new set of nodes, whose density increases piecewise. And we show that this procedure improves the quality of approximation. Namely, we prove that in this case the upper bound of approximation is e^-4/√3+ε√n , where ε only depends on n and is infinitesimal when n tends to infinity.
出处
《数学进展》
CSCD
北大核心
2015年第5期757-764,共8页
Advances in Mathematics(China)
基金
安徽省教育厅自然科学研究项目(No.KJ2011Z106)
安徽理工大学青年教师科学研究基金资助
关键词
Newman型有理算子
逼近
插值
节点集
Newman-type rational operator
approximation
interpolation
set of nodes