摘要
研究了一类包含Smarandache函数与Euler函数的经典函数方程的可解性问题,利用初等数论和分析的方法,讨论了这类条件方程在指数为奇数时解的情况,得到了一些有趣的结果.
In this paper, the solvability problem of a class of classic function equations involving the Smarandache function and the Euler function is studied. Under the condition that the index is an odd number, the solutions of the condition function equations are discussed by using the elementary number theory and the analysis methods. As a result, some interesting results are obtained which may enrich and improve this problem of the Smarandache function.
出处
《西南大学学报(自然科学版)》
CAS
CSCD
北大核心
2015年第8期71-75,共5页
Journal of Southwest University(Natural Science Edition)
基金
国家自然科学青年基金项目(61402335)
陕西省科技厅自然科学基金项目(2014JQ1006)
渭南师范学院基金项目(14SKYB21
15YKF005)
省级数学重点学科资助项目