期刊文献+

无相位去包裹的微分法三维形貌测量 被引量:3

Differential 3D shape measurement without phase unwrapping
原文传递
导出
摘要 提出了一种无需相位去包裹的微分算法,应用于投影栅三维形貌测量。首先由计算机设计并生成4幅四步相移正弦条纹图,利用DLP投影仪将其投影到待测物体上;然后由CCD相机采集受待测物体面型调制的变形光栅条纹图。再利用4幅四步相移变形条纹图,经数值运算求得沿水平和垂直方向上待测物体相位的偏导数,而相位偏导数的积分过程相当于求解泊松方程,于是利用离散余弦变换(DCT)求解泊松方程就可得到待测物体三维形貌对应的相位数据,从而重构待测物体的三维形貌。测量结果表明,相位解调的标准差小于0.0317rad,验证了本文方法的有效性。 A differential three-dimensional (3D) shape measurement method without phase unwrapping is proposed and applied for profilometry based on fringe projection. Firstly,four frames of phase-shifting sinusoidal fringes designed and generated by computer are projected onto the tested object surface by a digital-light-processing (DLP) projector. Then a CCD camera captures four frames of fringe patterns modulated by the tested objectls surface shape. Two partial derivatives of the phase of tested object with respect to horizontal and vertical spatial coordinates are derived from four frames of phase-shifted fringe patterns by numerical calculation of the intensity distribution patterns. Thus, integrating the partial derivatives of the phase is equivalent to finding the solution of the Poissonrs equation. Discrete cosine trans- form (DCT) is introduced to solve Poissonls equation with the Neumann boundary condition. The 3D surface information of the tested object is reconstructed completely. Finally,the experimental evaluation is conducted to prove the validity of the proposed method. The standard deviation of phase demodulation is less than 0. 0317 rad,which shows that the method has high precision. The feasibility of the proposed algorithm is also demonstrated by the experimental results.
出处 《光电子.激光》 EI CAS CSCD 北大核心 2015年第8期1549-1552,共4页 Journal of Optoelectronics·Laser
基金 国家自然科学基金(11172054 11472070)资助项目
关键词 相位测量轮廓术(PMP) 相移法 相位去包裹 线积分 泊松方程 偏导数 phase measuring profilometry (PMP) phase-shifting algorithm phase unwrapping line in-tegration Poisson's equation partial derivative
  • 相关文献

参考文献22

  • 1杨福俊,耿敏,戴美玲,何小元.基于单频四步相移条纹投影的不连续物体三维形貌测量[J].光电子.激光,2012,23(8):1535-1538. 被引量:20
  • 2García-Isáis C, Ochoa N A. One shot profilometry using phas e partitions[J].Optics and Lasers in Engineering,2015,68:111-120.
  • 3Fu Y,Wang Z,Li B,et al.Three-dimensional shape measureme nt of complex surfaces based on defocusing and phase-shifting coding[J].Journal of Modern Optics,2015,1-12.
  • 4Zheng D,Da F.Phase coding method for absolute phase retrieval with a large number of codewords[J].Optics express,2012,20(22):24139-24150.
  • 5Zhou C,Liu T,Si S,et al.An improved stair phase encoding method for absolute phase retrieval[J].Optics and Lasers in Engineering,2015,66:269-278.
  • 6钱晓凡,李斌,李兴华,林超,袁操今,施英.横向剪切最小二乘相位解包裹算法的改进[J].中国激光,2012,39(11):193-197. 被引量:17
  • 7Lei Z K, Wang C, Zhou C L.Multi-frequency inverse-phase frin ge projection profilometry for nonlinear phase error compensation[J].Optics and Lasers in Engineering,2015,66:249-257.
  • 8ZHONG Kai,LI Zhong-wei,SHI Yu-sheng,et al.Fast pha-se meas urement profilometry for arbitrary shape objects without phase unwrapping[J].Optics and Lasers in Engineering,2013, 51(11):1213-1222.
  • 9Lohry W, Chen V, Zhang S.Absolute three-dimensional shape measu rement using coded fringe patterns without phase unwrapping or projector calibration[J].Optics express,2014,22(2):1287-1301.
  • 10Téllez-Qui Aéones,Malacara-Doblado D.Phase recovering without phase unwrapping in phase-shifting interferometry by cubic and average interpolation[J].Applied optics,2012,51(9):1257-1265.

二级参考文献53

  • 1刘力双,张铫,卢慧卿,王宝光,李亚标.利用双频激光对二维图像测量系统标定的方法[J].光电子.激光,2005,16(11):1355-1358. 被引量:8
  • 2王军,赵建林,范琦,张鹏.相位图去包裹的一种新的综合方法[J].中国激光,2006,33(6):795-799. 被引量:8
  • 3王缓缓,杨玲,刘泊,潘传红.数字图像处理在三维轮廓形貌测量中的应用[J].信息技术,2007,31(2):40-42. 被引量:3
  • 4Saldner H O, Huntley J M. Temporal phase unwrapping: application to surface profiling of discontinuous objects [J]. Applied Optics. 1997,36( 13 ) : 2770-2775.
  • 5Takeda M, Gu Q, Kinoshita M, et al. Frequency-multiplex Fourier-transform profilometry:a single-shot three-dimen- sional shape measurement of objects with large height discontinuities and/or surface isolations[J]. 1997, Appl. Opt. ,36(22) :53,17-5354.
  • 6Li J L, Su H J, Su X Y. Two-frequency grating used in phase-measuring profilometry[J]. Applied Optics, 1997, 36(1) :277-280.
  • 7Towers C E,Towers D P,Jones J D C. Optimum frequen- cy selection in multifrequency interferometry[J]. Optics Letters, 2003,28( 1 1 ) : 887-889.
  • 8Liu K, Wang Y C, Lau D L, et al. Dual-frequency pattern scheme for high-speed 3-D shape measurement[J]. Op- tics Express, 2010,18( 5 ) : 5229-5244.
  • 9Chen F, Su X Y, Xiang L Q. Analysis and identification of phase error in phase measuring profilometry[J]. Optical Express. 2010,18(11) : 11300-11307.
  • 10Singh H, Sirkis J S. Direct extraction of phase gradients form Fourier-transform and phase-step fringe patterns [J]. Appl. Opt, 1994,33(22) ,5016-5020.

共引文献40

同被引文献33

  • 1仇巍,亢一澜.RIPI去包裹法及其在云纹干涉图像处理中的应用[J].实验力学,2004,19(2):129-135. 被引量:2
  • 2Lei Z K, Wang C, Zhou C L. Multi-frequency inverse- phase fringe projection profilometry for nonlinear phase error compensation[J]. Optics and Lasers in Engineer- ing, 2015,66 :249-257.
  • 3Liu T C,Zhou C L,Si S C,et al. Improved differential 3D shape retrieval [J]. Optics and Lasers in Engineering, 2015,73 : 143-149.
  • 4de Souza J, Oliveira M, dos Santos P. Branch-cut algo- rithm for optical phase unwrapping[J]. Optics Letters. 2015,40(15) : 3456-3459.
  • 5Rivera M,Hernandez-Lopez F J,Gonzalez A. Phase unwr- apping by accumulation of residual maps[J]. Optics and Lasers in Engineering,2015,64:51-58.
  • 6Zhou C,Liu T,Si S,et al. An improved stair phase enco- ding method for absolute phase retrieval[J]. Optics and Lasers in Engineering, 2015,66 : 269-278.
  • 7Kamilov U S, Papadopoulos I N, Shoreh M H, et al. Iso- tropic inverse-problem approach for two-dimensional phase unwrapping[J]. JOSA A,2015,32(6) : 1092-1100.
  • 8Saldner H O, Huntley J M. Temporal phase unwrapping: application to surface profiling of discontinuous object [J]. Appl. Opt. 1997,36(13) ; 2770-2775.
  • 9Li B, Ma S, Zhai Y. Fast temporal phase unwrapping method for the fringe reflection technique based on the orthogonal grid fringes[J], Applied optics,2015,54(20) : 6282-6290.
  • 10Fu Y, Wang Z, Zhang B L J. Three-dimensional shape measurement of complex surfaces based on defocusing and phase-shifting coding[J]. Journal of Modern Optics, 2015,62(12) :1015-1026.

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部